![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmioo | Structured version Visualization version GIF version |
Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ndmioo | β’ (Β¬ (π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 13335 | . . . 4 β’ (,) = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯ < π§ β§ π§ < π¦)}) | |
2 | 1 | ixxf 13341 | . . 3 β’ (,):(β* Γ β*)βΆπ« β* |
3 | 2 | fdmi 6729 | . 2 β’ dom (,) = (β* Γ β*) |
4 | 3 | ndmov 7595 | 1 β’ (Β¬ (π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β c0 4322 π« cpw 4602 Γ cxp 5674 (class class class)co 7412 β*cxr 11254 < clt 11255 (,)cioo 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-xr 11259 df-ioo 13335 |
This theorem is referenced by: iooid 13359 eliooxr 13389 iccssioo2 13404 ioombl 25414 mbfima 25479 dvferm1lem 25836 dvferm2lem 25838 dvferm 25840 dvivthlem1 25861 |
Copyright terms: Public domain | W3C validator |