MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmioo Structured version   Visualization version   GIF version

Theorem ndmioo 13267
Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ndmioo (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)

Proof of Theorem ndmioo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 13244 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 13250 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
32fdmi 6657 . 2 dom (,) = (ℝ* × ℝ*)
43ndmov 7525 1 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4278  𝒫 cpw 4545   × cxp 5609  (class class class)co 7341  *cxr 11140   < clt 11141  (,)cioo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-xr 11145  df-ioo 13244
This theorem is referenced by:  iooid  13268  eliooxr  13299  iccssioo2  13314  ioombl  25488  mbfima  25553  dvferm1lem  25910  dvferm2lem  25912  dvferm  25914  dvivthlem1  25935
  Copyright terms: Public domain W3C validator