MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmioo Structured version   Visualization version   GIF version

Theorem ndmioo 12848
Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ndmioo (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)

Proof of Theorem ndmioo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12825 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 12831 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
32fdmi 6516 . 2 dom (,) = (ℝ* × ℝ*)
43ndmov 7348 1 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  c0 4211  𝒫 cpw 4488   × cxp 5523  (class class class)co 7170  *cxr 10752   < clt 10753  (,)cioo 12821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-xr 10757  df-ioo 12825
This theorem is referenced by:  iooid  12849  eliooxr  12879  iccssioo2  12894  ioombl  24317  mbfima  24382  dvferm1lem  24736  dvferm2lem  24738  dvferm  24740  dvivthlem1  24760
  Copyright terms: Public domain W3C validator