MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmioo Structured version   Visualization version   GIF version

Theorem ndmioo 13411
Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ndmioo (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)

Proof of Theorem ndmioo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 13388 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 13394 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
32fdmi 6748 . 2 dom (,) = (ℝ* × ℝ*)
43ndmov 7617 1 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  c0 4339  𝒫 cpw 4605   × cxp 5687  (class class class)co 7431  *cxr 11292   < clt 11293  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-xr 11297  df-ioo 13388
This theorem is referenced by:  iooid  13412  eliooxr  13442  iccssioo2  13457  ioombl  25614  mbfima  25679  dvferm1lem  26037  dvferm2lem  26039  dvferm  26041  dvivthlem1  26062
  Copyright terms: Public domain W3C validator