MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Visualization version   GIF version

Theorem leordtval 23107
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
leordtval.3 𝐶 = ran (,)
Assertion
Ref Expression
leordtval (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))

Proof of Theorem leordtval
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 leordtval.2 . . 3 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
31, 2leordtval2 23106 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
4 letsr 18559 . . . 4 ≤ ∈ TosetRel
5 ledm 18556 . . . . 5 * = dom ≤
61leordtvallem1 23104 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
71, 2leordtvallem2 23105 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
8 leordtval.3 . . . . . 6 𝐶 = ran (,)
9 df-ioo 13317 . . . . . . . 8 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)})
10 xrltnle 11248 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
1110adantlr 715 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
12 xrltnle 11248 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1312ancoms 458 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1413adantll 714 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1511, 14anbi12d 632 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦𝑦 < 𝑏) ↔ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)))
1615rabbidva 3415 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1716mpoeq3ia 7470 . . . . . . . 8 (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
189, 17eqtri 2753 . . . . . . 7 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1918rneqi 5904 . . . . . 6 ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
208, 19eqtri 2753 . . . . 5 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
215, 6, 7, 20ordtbas2 23085 . . . 4 ( ≤ ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
224, 21ax-mp 5 . . 3 (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶)
2322fveq2i 6864 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘((𝐴𝐵) ∪ 𝐶))
243, 23eqtri 2753 1 (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  cun 3915   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  ficfi 9368  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  (,]cioc 13314  [,)cico 13315  topGenctg 17407  ordTopcordt 17469   TosetRel ctsr 18531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-top 22788  df-bases 22840
This theorem is referenced by:  iocpnfordt  23109  icomnfordt  23110  iooordt  23111  pnfnei  23114  mnfnei  23115  xrtgioo  24702
  Copyright terms: Public domain W3C validator