| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
| leordtval.3 | ⊢ 𝐶 = ran (,) |
| Ref | Expression |
|---|---|
| leordtval | ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
| 2 | leordtval.2 | . . 3 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
| 3 | 1, 2 | leordtval2 23106 | . 2 ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 4 | letsr 18559 | . . . 4 ⊢ ≤ ∈ TosetRel | |
| 5 | ledm 18556 | . . . . 5 ⊢ ℝ* = dom ≤ | |
| 6 | 1 | leordtvallem1 23104 | . . . . 5 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
| 7 | 1, 2 | leordtvallem2 23105 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
| 8 | leordtval.3 | . . . . . 6 ⊢ 𝐶 = ran (,) | |
| 9 | df-ioo 13317 | . . . . . . . 8 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) | |
| 10 | xrltnle 11248 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) | |
| 11 | 10 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) |
| 12 | xrltnle 11248 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) | |
| 13 | 12 | ancoms 458 | . . . . . . . . . . . 12 ⊢ ((𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
| 14 | 13 | adantll 714 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
| 15 | 11, 14 | anbi12d 632 | . . . . . . . . . 10 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦 ∧ 𝑦 < 𝑏) ↔ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦))) |
| 16 | 15 | rabbidva 3415 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
| 17 | 16 | mpoeq3ia 7470 | . . . . . . . 8 ⊢ (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
| 18 | 9, 17 | eqtri 2753 | . . . . . . 7 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
| 19 | 18 | rneqi 5904 | . . . . . 6 ⊢ ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
| 20 | 8, 19 | eqtri 2753 | . . . . 5 ⊢ 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
| 21 | 5, 6, 7, 20 | ordtbas2 23085 | . . . 4 ⊢ ( ≤ ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
| 22 | 4, 21 | ax-mp 5 | . . 3 ⊢ (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
| 23 | 22 | fveq2i 6864 | . 2 ⊢ (topGen‘(fi‘(𝐴 ∪ 𝐵))) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
| 24 | 3, 23 | eqtri 2753 | 1 ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∪ cun 3915 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ficfi 9368 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 (,)cioo 13313 (,]cioc 13314 [,)cico 13315 topGenctg 17407 ordTopcordt 17469 TosetRel ctsr 18531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-topgen 17413 df-ordt 17471 df-ps 18532 df-tsr 18533 df-top 22788 df-bases 22840 |
| This theorem is referenced by: iocpnfordt 23109 icomnfordt 23110 iooordt 23111 pnfnei 23114 mnfnei 23115 xrtgioo 24702 |
| Copyright terms: Public domain | W3C validator |