MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Visualization version   GIF version

Theorem leordtval 23221
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
leordtval.3 𝐶 = ran (,)
Assertion
Ref Expression
leordtval (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))

Proof of Theorem leordtval
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 leordtval.2 . . 3 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
31, 2leordtval2 23220 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
4 letsr 18638 . . . 4 ≤ ∈ TosetRel
5 ledm 18635 . . . . 5 * = dom ≤
61leordtvallem1 23218 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
71, 2leordtvallem2 23219 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
8 leordtval.3 . . . . . 6 𝐶 = ran (,)
9 df-ioo 13391 . . . . . . . 8 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)})
10 xrltnle 11328 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
1110adantlr 715 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
12 xrltnle 11328 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1312ancoms 458 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1413adantll 714 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1511, 14anbi12d 632 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦𝑦 < 𝑏) ↔ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)))
1615rabbidva 3443 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1716mpoeq3ia 7511 . . . . . . . 8 (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
189, 17eqtri 2765 . . . . . . 7 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1918rneqi 5948 . . . . . 6 ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
208, 19eqtri 2765 . . . . 5 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
215, 6, 7, 20ordtbas2 23199 . . . 4 ( ≤ ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
224, 21ax-mp 5 . . 3 (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶)
2322fveq2i 6909 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘((𝐴𝐵) ∪ 𝐶))
243, 23eqtri 2765 1 (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3436  cun 3949   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  ficfi 9450  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387  (,]cioc 13388  [,)cico 13389  topGenctg 17482  ordTopcordt 17544   TosetRel ctsr 18610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-top 22900  df-bases 22953
This theorem is referenced by:  iocpnfordt  23223  icomnfordt  23224  iooordt  23225  pnfnei  23228  mnfnei  23229  xrtgioo  24828
  Copyright terms: Public domain W3C validator