Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
leordtval.3 | ⊢ 𝐶 = ran (,) |
Ref | Expression |
---|---|
leordtval | ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | leordtval.2 | . . 3 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
3 | 1, 2 | leordtval2 21976 | . 2 ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
4 | letsr 17966 | . . . 4 ⊢ ≤ ∈ TosetRel | |
5 | ledm 17963 | . . . . 5 ⊢ ℝ* = dom ≤ | |
6 | 1 | leordtvallem1 21974 | . . . . 5 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
7 | 1, 2 | leordtvallem2 21975 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
8 | leordtval.3 | . . . . . 6 ⊢ 𝐶 = ran (,) | |
9 | df-ioo 12838 | . . . . . . . 8 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) | |
10 | xrltnle 10799 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) | |
11 | 10 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) |
12 | xrltnle 10799 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) | |
13 | 12 | ancoms 462 | . . . . . . . . . . . 12 ⊢ ((𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
14 | 13 | adantll 714 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
15 | 11, 14 | anbi12d 634 | . . . . . . . . . 10 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦 ∧ 𝑦 < 𝑏) ↔ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦))) |
16 | 15 | rabbidva 3380 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
17 | 16 | mpoeq3ia 7259 | . . . . . . . 8 ⊢ (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
18 | 9, 17 | eqtri 2762 | . . . . . . 7 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
19 | 18 | rneqi 5790 | . . . . . 6 ⊢ ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
20 | 8, 19 | eqtri 2762 | . . . . 5 ⊢ 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
21 | 5, 6, 7, 20 | ordtbas2 21955 | . . . 4 ⊢ ( ≤ ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
22 | 4, 21 | ax-mp 5 | . . 3 ⊢ (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
23 | 22 | fveq2i 6690 | . 2 ⊢ (topGen‘(fi‘(𝐴 ∪ 𝐵))) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
24 | 3, 23 | eqtri 2762 | 1 ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3058 ∪ cun 3851 class class class wbr 5040 ↦ cmpt 5120 ran crn 5536 ‘cfv 6350 (class class class)co 7183 ∈ cmpo 7185 ficfi 8960 +∞cpnf 10763 -∞cmnf 10764 ℝ*cxr 10765 < clt 10766 ≤ cle 10767 (,)cioo 12834 (,]cioc 12835 [,)cico 12836 topGenctg 16827 ordTopcordt 16888 TosetRel ctsr 17938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-1o 8144 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-fi 8961 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-ioo 12838 df-ioc 12839 df-ico 12840 df-icc 12841 df-topgen 16833 df-ordt 16890 df-ps 17939 df-tsr 17940 df-top 21658 df-bases 21710 |
This theorem is referenced by: iocpnfordt 21979 icomnfordt 21980 iooordt 21981 pnfnei 21984 mnfnei 21985 xrtgioo 23571 |
Copyright terms: Public domain | W3C validator |