MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Visualization version   GIF version

Theorem leordtval 22708
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
leordtval.3 𝐶 = ran (,)
Assertion
Ref Expression
leordtval (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))

Proof of Theorem leordtval
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 leordtval.2 . . 3 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
31, 2leordtval2 22707 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
4 letsr 18542 . . . 4 ≤ ∈ TosetRel
5 ledm 18539 . . . . 5 * = dom ≤
61leordtvallem1 22705 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
71, 2leordtvallem2 22706 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
8 leordtval.3 . . . . . 6 𝐶 = ran (,)
9 df-ioo 13324 . . . . . . . 8 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)})
10 xrltnle 11277 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
1110adantlr 713 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
12 xrltnle 11277 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1312ancoms 459 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1413adantll 712 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1511, 14anbi12d 631 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦𝑦 < 𝑏) ↔ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)))
1615rabbidva 3439 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1716mpoeq3ia 7483 . . . . . . . 8 (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
189, 17eqtri 2760 . . . . . . 7 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1918rneqi 5934 . . . . . 6 ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
208, 19eqtri 2760 . . . . 5 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
215, 6, 7, 20ordtbas2 22686 . . . 4 ( ≤ ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
224, 21ax-mp 5 . . 3 (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶)
2322fveq2i 6891 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘((𝐴𝐵) ∪ 𝐶))
243, 23eqtri 2760 1 (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432  cun 3945   class class class wbr 5147  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7405  cmpo 7407  ficfi 9401  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  (,)cioo 13320  (,]cioc 13321  [,)cico 13322  topGenctg 17379  ordTopcordt 17441   TosetRel ctsr 18514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-topgen 17385  df-ordt 17443  df-ps 18515  df-tsr 18516  df-top 22387  df-bases 22440
This theorem is referenced by:  iocpnfordt  22710  icomnfordt  22711  iooordt  22712  pnfnei  22715  mnfnei  22716  xrtgioo  24313
  Copyright terms: Public domain W3C validator