![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | β’ π΄ = ran (π₯ β β* β¦ (π₯(,]+β)) |
leordtval.2 | β’ π΅ = ran (π₯ β β* β¦ (-β[,)π₯)) |
leordtval.3 | β’ πΆ = ran (,) |
Ref | Expression |
---|---|
leordtval | β’ (ordTopβ β€ ) = (topGenβ((π΄ βͺ π΅) βͺ πΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . . 3 β’ π΄ = ran (π₯ β β* β¦ (π₯(,]+β)) | |
2 | leordtval.2 | . . 3 β’ π΅ = ran (π₯ β β* β¦ (-β[,)π₯)) | |
3 | 1, 2 | leordtval2 23037 | . 2 β’ (ordTopβ β€ ) = (topGenβ(fiβ(π΄ βͺ π΅))) |
4 | letsr 18547 | . . . 4 β’ β€ β TosetRel | |
5 | ledm 18544 | . . . . 5 β’ β* = dom β€ | |
6 | 1 | leordtvallem1 23035 | . . . . 5 β’ π΄ = ran (π₯ β β* β¦ {π¦ β β* β£ Β¬ π¦ β€ π₯}) |
7 | 1, 2 | leordtvallem2 23036 | . . . . 5 β’ π΅ = ran (π₯ β β* β¦ {π¦ β β* β£ Β¬ π₯ β€ π¦}) |
8 | leordtval.3 | . . . . . 6 β’ πΆ = ran (,) | |
9 | df-ioo 13324 | . . . . . . . 8 β’ (,) = (π β β*, π β β* β¦ {π¦ β β* β£ (π < π¦ β§ π¦ < π)}) | |
10 | xrltnle 11277 | . . . . . . . . . . . 12 β’ ((π β β* β§ π¦ β β*) β (π < π¦ β Β¬ π¦ β€ π)) | |
11 | 10 | adantlr 712 | . . . . . . . . . . 11 β’ (((π β β* β§ π β β*) β§ π¦ β β*) β (π < π¦ β Β¬ π¦ β€ π)) |
12 | xrltnle 11277 | . . . . . . . . . . . . 13 β’ ((π¦ β β* β§ π β β*) β (π¦ < π β Β¬ π β€ π¦)) | |
13 | 12 | ancoms 458 | . . . . . . . . . . . 12 β’ ((π β β* β§ π¦ β β*) β (π¦ < π β Β¬ π β€ π¦)) |
14 | 13 | adantll 711 | . . . . . . . . . . 11 β’ (((π β β* β§ π β β*) β§ π¦ β β*) β (π¦ < π β Β¬ π β€ π¦)) |
15 | 11, 14 | anbi12d 630 | . . . . . . . . . 10 β’ (((π β β* β§ π β β*) β§ π¦ β β*) β ((π < π¦ β§ π¦ < π) β (Β¬ π¦ β€ π β§ Β¬ π β€ π¦))) |
16 | 15 | rabbidva 3431 | . . . . . . . . 9 β’ ((π β β* β§ π β β*) β {π¦ β β* β£ (π < π¦ β§ π¦ < π)} = {π¦ β β* β£ (Β¬ π¦ β€ π β§ Β¬ π β€ π¦)}) |
17 | 16 | mpoeq3ia 7479 | . . . . . . . 8 β’ (π β β*, π β β* β¦ {π¦ β β* β£ (π < π¦ β§ π¦ < π)}) = (π β β*, π β β* β¦ {π¦ β β* β£ (Β¬ π¦ β€ π β§ Β¬ π β€ π¦)}) |
18 | 9, 17 | eqtri 2752 | . . . . . . 7 β’ (,) = (π β β*, π β β* β¦ {π¦ β β* β£ (Β¬ π¦ β€ π β§ Β¬ π β€ π¦)}) |
19 | 18 | rneqi 5926 | . . . . . 6 β’ ran (,) = ran (π β β*, π β β* β¦ {π¦ β β* β£ (Β¬ π¦ β€ π β§ Β¬ π β€ π¦)}) |
20 | 8, 19 | eqtri 2752 | . . . . 5 β’ πΆ = ran (π β β*, π β β* β¦ {π¦ β β* β£ (Β¬ π¦ β€ π β§ Β¬ π β€ π¦)}) |
21 | 5, 6, 7, 20 | ordtbas2 23016 | . . . 4 β’ ( β€ β TosetRel β (fiβ(π΄ βͺ π΅)) = ((π΄ βͺ π΅) βͺ πΆ)) |
22 | 4, 21 | ax-mp 5 | . . 3 β’ (fiβ(π΄ βͺ π΅)) = ((π΄ βͺ π΅) βͺ πΆ) |
23 | 22 | fveq2i 6884 | . 2 β’ (topGenβ(fiβ(π΄ βͺ π΅))) = (topGenβ((π΄ βͺ π΅) βͺ πΆ)) |
24 | 3, 23 | eqtri 2752 | 1 β’ (ordTopβ β€ ) = (topGenβ((π΄ βͺ π΅) βͺ πΆ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3424 βͺ cun 3938 class class class wbr 5138 β¦ cmpt 5221 ran crn 5667 βcfv 6533 (class class class)co 7401 β cmpo 7403 ficfi 9400 +βcpnf 11241 -βcmnf 11242 β*cxr 11243 < clt 11244 β€ cle 11245 (,)cioo 13320 (,]cioc 13321 [,)cico 13322 topGenctg 17381 ordTopcordt 17443 TosetRel ctsr 18519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fi 9401 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-topgen 17387 df-ordt 17445 df-ps 18520 df-tsr 18521 df-top 22717 df-bases 22770 |
This theorem is referenced by: iocpnfordt 23040 icomnfordt 23041 iooordt 23042 pnfnei 23045 mnfnei 23046 xrtgioo 24643 |
Copyright terms: Public domain | W3C validator |