MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Visualization version   GIF version

Theorem leordtval 23100
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
leordtval.3 𝐶 = ran (,)
Assertion
Ref Expression
leordtval (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))

Proof of Theorem leordtval
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 leordtval.2 . . 3 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
31, 2leordtval2 23099 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
4 letsr 18552 . . . 4 ≤ ∈ TosetRel
5 ledm 18549 . . . . 5 * = dom ≤
61leordtvallem1 23097 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
71, 2leordtvallem2 23098 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
8 leordtval.3 . . . . . 6 𝐶 = ran (,)
9 df-ioo 13310 . . . . . . . 8 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)})
10 xrltnle 11241 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
1110adantlr 715 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
12 xrltnle 11241 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1312ancoms 458 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1413adantll 714 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1511, 14anbi12d 632 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦𝑦 < 𝑏) ↔ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)))
1615rabbidva 3412 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1716mpoeq3ia 7467 . . . . . . . 8 (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
189, 17eqtri 2752 . . . . . . 7 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1918rneqi 5901 . . . . . 6 ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
208, 19eqtri 2752 . . . . 5 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
215, 6, 7, 20ordtbas2 23078 . . . 4 ( ≤ ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
224, 21ax-mp 5 . . 3 (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶)
2322fveq2i 6861 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘((𝐴𝐵) ∪ 𝐶))
243, 23eqtri 2752 1 (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cun 3912   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  ficfi 9361  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  (,]cioc 13307  [,)cico 13308  topGenctg 17400  ordTopcordt 17462   TosetRel ctsr 18524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-top 22781  df-bases 22833
This theorem is referenced by:  iocpnfordt  23102  icomnfordt  23103  iooordt  23104  pnfnei  23107  mnfnei  23108  xrtgioo  24695
  Copyright terms: Public domain W3C validator