Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
leordtval.3 | ⊢ 𝐶 = ran (,) |
Ref | Expression |
---|---|
leordtval | ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | leordtval.2 | . . 3 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
3 | 1, 2 | leordtval2 22344 | . 2 ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
4 | letsr 18292 | . . . 4 ⊢ ≤ ∈ TosetRel | |
5 | ledm 18289 | . . . . 5 ⊢ ℝ* = dom ≤ | |
6 | 1 | leordtvallem1 22342 | . . . . 5 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
7 | 1, 2 | leordtvallem2 22343 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
8 | leordtval.3 | . . . . . 6 ⊢ 𝐶 = ran (,) | |
9 | df-ioo 13065 | . . . . . . . 8 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) | |
10 | xrltnle 11026 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) | |
11 | 10 | adantlr 711 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) |
12 | xrltnle 11026 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) | |
13 | 12 | ancoms 458 | . . . . . . . . . . . 12 ⊢ ((𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
14 | 13 | adantll 710 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
15 | 11, 14 | anbi12d 630 | . . . . . . . . . 10 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦 ∧ 𝑦 < 𝑏) ↔ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦))) |
16 | 15 | rabbidva 3410 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
17 | 16 | mpoeq3ia 7344 | . . . . . . . 8 ⊢ (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
18 | 9, 17 | eqtri 2767 | . . . . . . 7 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
19 | 18 | rneqi 5843 | . . . . . 6 ⊢ ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
20 | 8, 19 | eqtri 2767 | . . . . 5 ⊢ 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
21 | 5, 6, 7, 20 | ordtbas2 22323 | . . . 4 ⊢ ( ≤ ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
22 | 4, 21 | ax-mp 5 | . . 3 ⊢ (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
23 | 22 | fveq2i 6771 | . 2 ⊢ (topGen‘(fi‘(𝐴 ∪ 𝐵))) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
24 | 3, 23 | eqtri 2767 | 1 ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ∪ cun 3889 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ficfi 9130 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 (,)cioo 13061 (,]cioc 13062 [,)cico 13063 topGenctg 17129 ordTopcordt 17191 TosetRel ctsr 18264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fi 9131 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-ioo 13065 df-ioc 13066 df-ico 13067 df-icc 13068 df-topgen 17135 df-ordt 17193 df-ps 18265 df-tsr 18266 df-top 22024 df-bases 22077 |
This theorem is referenced by: iocpnfordt 22347 icomnfordt 22348 iooordt 22349 pnfnei 22352 mnfnei 22353 xrtgioo 23950 |
Copyright terms: Public domain | W3C validator |