MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Visualization version   GIF version

Theorem leordtval 23128
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
leordtval.3 𝐶 = ran (,)
Assertion
Ref Expression
leordtval (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))

Proof of Theorem leordtval
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 leordtval.2 . . 3 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
31, 2leordtval2 23127 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
4 letsr 18499 . . . 4 ≤ ∈ TosetRel
5 ledm 18496 . . . . 5 * = dom ≤
61leordtvallem1 23125 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
71, 2leordtvallem2 23126 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
8 leordtval.3 . . . . . 6 𝐶 = ran (,)
9 df-ioo 13249 . . . . . . . 8 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)})
10 xrltnle 11179 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
1110adantlr 715 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦𝑎))
12 xrltnle 11179 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1312ancoms 458 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1413adantll 714 . . . . . . . . . . 11 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏𝑦))
1511, 14anbi12d 632 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦𝑦 < 𝑏) ↔ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)))
1615rabbidva 3401 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1716mpoeq3ia 7424 . . . . . . . 8 (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
189, 17eqtri 2754 . . . . . . 7 (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
1918rneqi 5876 . . . . . 6 ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
208, 19eqtri 2754 . . . . 5 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦𝑎 ∧ ¬ 𝑏𝑦)})
215, 6, 7, 20ordtbas2 23106 . . . 4 ( ≤ ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
224, 21ax-mp 5 . . 3 (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶)
2322fveq2i 6825 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘((𝐴𝐵) ∪ 𝐶))
243, 23eqtri 2754 1 (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cun 3895   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  cmpo 7348  ficfi 9294  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  (,)cioo 13245  (,]cioc 13246  [,)cico 13247  topGenctg 17341  ordTopcordt 17403   TosetRel ctsr 18471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-bases 22861
This theorem is referenced by:  iocpnfordt  23130  icomnfordt  23131  iooordt  23132  pnfnei  23135  mnfnei  23136  xrtgioo  24722
  Copyright terms: Public domain W3C validator