MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcld Structured version   Visualization version   GIF version

Theorem icopnfcld 23378
Description: Right-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
icopnfcld (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icopnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10700 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10689 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10697 . . . . . 6 +∞ ∈ ℝ*
54a1i 11 . . . . 5 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12521 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12518 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioo 12745 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-ico 12747 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrlenlt 10708 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤 ↔ ¬ 𝑤 < 𝐴))
11 xrlttr 12536 . . . . . 6 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrltletr 12553 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴𝑤) → -∞ < 𝑤))
138, 9, 10, 8, 11, 12ixxun 12757 . . . . 5 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1374 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
15 ioomax 12814 . . . 4 (-∞(,)+∞) = ℝ
1614, 15syl6eq 2874 . . 3 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ)
17 ioossre 12801 . . . 4 (-∞(,)𝐴) ⊆ ℝ
188, 9, 10ixxdisj 12756 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
191, 3, 5, 18mp3an2i 1462 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
20 uneqdifeq 4440 . . . 4 (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2117, 19, 20sylancr 589 . . 3 (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2216, 21mpbid 234 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))
23 retop 23372 . . 3 (topGen‘ran (,)) ∈ Top
24 iooretop 23376 . . 3 (-∞(,)𝐴) ∈ (topGen‘ran (,))
25 uniretop 23373 . . . 4 ℝ = (topGen‘ran (,))
2625opncld 21643 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))))
2723, 24, 26mp2an 690 . 2 (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))
2822, 27eqeltrrdi 2924 1 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   class class class wbr 5068  ran crn 5558  cfv 6357  (class class class)co 7158  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  (,)cioo 12741  [,)cico 12743  topGenctg 16713  Topctop 21503  Clsdccld 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-ico 12747  df-topgen 16719  df-top 21504  df-bases 21556  df-cld 21629
This theorem is referenced by:  sxbrsigalem3  31532  orvcgteel  31727  dvasin  34980  dvacos  34981  dvreasin  34982  dvreacos  34983  rfcnpre3  41297
  Copyright terms: Public domain W3C validator