| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icopnfcld | Structured version Visualization version GIF version | ||
| Description: Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| icopnfcld | ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11318 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
| 3 | rexr 11307 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11315 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
| 6 | mnflt 13165 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 7 | ltpnf 13162 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 8 | df-ioo 13391 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | df-ico 13393 | . . . . . 6 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 10 | xrlenlt 11326 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐴)) | |
| 11 | xrlttr 13182 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
| 12 | xrltletr 13199 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 ≤ 𝑤) → -∞ < 𝑤)) | |
| 13 | 8, 9, 10, 8, 11, 12 | ixxun 13403 | . . . . 5 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
| 14 | 2, 3, 5, 6, 7, 13 | syl32anc 1380 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
| 15 | ioomax 13462 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
| 16 | 14, 15 | eqtrdi 2793 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ) |
| 17 | ioossre 13448 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
| 18 | 8, 9, 10 | ixxdisj 13402 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
| 19 | 1, 3, 5, 18 | mp3an2i 1468 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
| 20 | uneqdifeq 4493 | . . . 4 ⊢ (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) | |
| 21 | 17, 19, 20 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) |
| 22 | 16, 21 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)) |
| 23 | retop 24782 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 24 | iooretop 24786 | . . 3 ⊢ (-∞(,)𝐴) ∈ (topGen‘ran (,)) | |
| 25 | uniretop 24783 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 26 | 25 | opncld 23041 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))) |
| 27 | 23, 24, 26 | mp2an 692 | . 2 ⊢ (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))) |
| 28 | 22, 27 | eqeltrrdi 2850 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 (,)cioo 13387 [,)cico 13389 topGenctg 17482 Topctop 22899 Clsdccld 23024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-ioo 13391 df-ico 13393 df-topgen 17488 df-top 22900 df-bases 22953 df-cld 23027 |
| This theorem is referenced by: sxbrsigalem3 34274 orvcgteel 34470 dvasin 37711 dvacos 37712 dvreasin 37713 dvreacos 37714 rfcnpre3 45038 |
| Copyright terms: Public domain | W3C validator |