| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icopnfcld | Structured version Visualization version GIF version | ||
| Description: Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| icopnfcld | ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11178 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
| 3 | rexr 11167 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11175 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
| 6 | mnflt 13026 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 7 | ltpnf 13023 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 8 | df-ioo 13253 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | df-ico 13255 | . . . . . 6 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 10 | xrlenlt 11186 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐴)) | |
| 11 | xrlttr 13043 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
| 12 | xrltletr 13060 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 ≤ 𝑤) → -∞ < 𝑤)) | |
| 13 | 8, 9, 10, 8, 11, 12 | ixxun 13265 | . . . . 5 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
| 14 | 2, 3, 5, 6, 7, 13 | syl32anc 1380 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
| 15 | ioomax 13326 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
| 16 | 14, 15 | eqtrdi 2784 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ) |
| 17 | ioossre 13311 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
| 18 | 8, 9, 10 | ixxdisj 13264 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
| 19 | 1, 3, 5, 18 | mp3an2i 1468 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
| 20 | uneqdifeq 4442 | . . . 4 ⊢ (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) | |
| 21 | 17, 19, 20 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) |
| 22 | 16, 21 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)) |
| 23 | retop 24679 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 24 | iooretop 24683 | . . 3 ⊢ (-∞(,)𝐴) ∈ (topGen‘ran (,)) | |
| 25 | uniretop 24680 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 26 | 25 | opncld 22951 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))) |
| 27 | 23, 24, 26 | mp2an 692 | . 2 ⊢ (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))) |
| 28 | 22, 27 | eqeltrrdi 2842 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 ran crn 5622 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 (,)cioo 13249 [,)cico 13251 topGenctg 17345 Topctop 22811 Clsdccld 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-ioo 13253 df-ico 13255 df-topgen 17351 df-top 22812 df-bases 22864 df-cld 22937 |
| This theorem is referenced by: sxbrsigalem3 34308 orvcgteel 34504 dvasin 37767 dvacos 37768 dvreasin 37769 dvreacos 37770 rfcnpre3 45157 |
| Copyright terms: Public domain | W3C validator |