MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcld Structured version   Visualization version   GIF version

Theorem icopnfcld 23619
Description: Right-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
icopnfcld (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icopnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10855 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10844 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10852 . . . . . 6 +∞ ∈ ℝ*
54a1i 11 . . . . 5 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12680 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12677 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioo 12904 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-ico 12906 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrlenlt 10863 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤 ↔ ¬ 𝑤 < 𝐴))
11 xrlttr 12695 . . . . . 6 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrltletr 12712 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴𝑤) → -∞ < 𝑤))
138, 9, 10, 8, 11, 12ixxun 12916 . . . . 5 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1380 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
15 ioomax 12975 . . . 4 (-∞(,)+∞) = ℝ
1614, 15eqtrdi 2787 . . 3 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ)
17 ioossre 12961 . . . 4 (-∞(,)𝐴) ⊆ ℝ
188, 9, 10ixxdisj 12915 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
191, 3, 5, 18mp3an2i 1468 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
20 uneqdifeq 4390 . . . 4 (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2117, 19, 20sylancr 590 . . 3 (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2216, 21mpbid 235 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))
23 retop 23613 . . 3 (topGen‘ran (,)) ∈ Top
24 iooretop 23617 . . 3 (-∞(,)𝐴) ∈ (topGen‘ran (,))
25 uniretop 23614 . . . 4 ℝ = (topGen‘ran (,))
2625opncld 21884 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))))
2723, 24, 26mp2an 692 . 2 (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))
2822, 27eqeltrrdi 2840 1 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2112  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4223   class class class wbr 5039  ran crn 5537  cfv 6358  (class class class)co 7191  cr 10693  +∞cpnf 10829  -∞cmnf 10830  *cxr 10831   < clt 10832  cle 10833  (,)cioo 12900  [,)cico 12902  topGenctg 16896  Topctop 21744  Clsdccld 21867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-ioo 12904  df-ico 12906  df-topgen 16902  df-top 21745  df-bases 21797  df-cld 21870
This theorem is referenced by:  sxbrsigalem3  31905  orvcgteel  32100  dvasin  35547  dvacos  35548  dvreasin  35549  dvreacos  35550  rfcnpre3  42190
  Copyright terms: Public domain W3C validator