Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icopnfcld | Structured version Visualization version GIF version |
Description: Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
icopnfcld | ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11016 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
3 | rexr 11005 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
4 | pnfxr 11013 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
6 | mnflt 12841 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
7 | ltpnf 12838 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
8 | df-ioo 13065 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | df-ico 13067 | . . . . . 6 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | xrlenlt 11024 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐴)) | |
11 | xrlttr 12856 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
12 | xrltletr 12873 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 ≤ 𝑤) → -∞ < 𝑤)) | |
13 | 8, 9, 10, 8, 11, 12 | ixxun 13077 | . . . . 5 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
14 | 2, 3, 5, 6, 7, 13 | syl32anc 1376 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
15 | ioomax 13136 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
16 | 14, 15 | eqtrdi 2795 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ) |
17 | ioossre 13122 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
18 | 8, 9, 10 | ixxdisj 13076 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
19 | 1, 3, 5, 18 | mp3an2i 1464 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
20 | uneqdifeq 4428 | . . . 4 ⊢ (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) | |
21 | 17, 19, 20 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) |
22 | 16, 21 | mpbid 231 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)) |
23 | retop 23906 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
24 | iooretop 23910 | . . 3 ⊢ (-∞(,)𝐴) ∈ (topGen‘ran (,)) | |
25 | uniretop 23907 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
26 | 25 | opncld 22165 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 23, 24, 26 | mp2an 688 | . 2 ⊢ (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))) |
28 | 22, 27 | eqeltrrdi 2849 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 ran crn 5589 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 (,)cioo 13061 [,)cico 13063 topGenctg 17129 Topctop 22023 Clsdccld 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-ioo 13065 df-ico 13067 df-topgen 17135 df-top 22024 df-bases 22077 df-cld 22151 |
This theorem is referenced by: sxbrsigalem3 32218 orvcgteel 32413 dvasin 35840 dvacos 35841 dvreasin 35842 dvreacos 35843 rfcnpre3 42529 |
Copyright terms: Public domain | W3C validator |