![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icopnfcld | Structured version Visualization version GIF version |
Description: Right-unbounded closed intervals are closed sets of the standard topology on β. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
icopnfcld | β’ (π΄ β β β (π΄[,)+β) β (Clsdβ(topGenβran (,)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11271 | . . . . . 6 β’ -β β β* | |
2 | 1 | a1i 11 | . . . . 5 β’ (π΄ β β β -β β β*) |
3 | rexr 11260 | . . . . 5 β’ (π΄ β β β π΄ β β*) | |
4 | pnfxr 11268 | . . . . . 6 β’ +β β β* | |
5 | 4 | a1i 11 | . . . . 5 β’ (π΄ β β β +β β β*) |
6 | mnflt 13103 | . . . . 5 β’ (π΄ β β β -β < π΄) | |
7 | ltpnf 13100 | . . . . 5 β’ (π΄ β β β π΄ < +β) | |
8 | df-ioo 13328 | . . . . . 6 β’ (,) = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯ < π§ β§ π§ < π¦)}) | |
9 | df-ico 13330 | . . . . . 6 β’ [,) = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯ β€ π§ β§ π§ < π¦)}) | |
10 | xrlenlt 11279 | . . . . . 6 β’ ((π΄ β β* β§ π€ β β*) β (π΄ β€ π€ β Β¬ π€ < π΄)) | |
11 | xrlttr 13119 | . . . . . 6 β’ ((π€ β β* β§ π΄ β β* β§ +β β β*) β ((π€ < π΄ β§ π΄ < +β) β π€ < +β)) | |
12 | xrltletr 13136 | . . . . . 6 β’ ((-β β β* β§ π΄ β β* β§ π€ β β*) β ((-β < π΄ β§ π΄ β€ π€) β -β < π€)) | |
13 | 8, 9, 10, 8, 11, 12 | ixxun 13340 | . . . . 5 β’ (((-β β β* β§ π΄ β β* β§ +β β β*) β§ (-β < π΄ β§ π΄ < +β)) β ((-β(,)π΄) βͺ (π΄[,)+β)) = (-β(,)+β)) |
14 | 2, 3, 5, 6, 7, 13 | syl32anc 1379 | . . . 4 β’ (π΄ β β β ((-β(,)π΄) βͺ (π΄[,)+β)) = (-β(,)+β)) |
15 | ioomax 13399 | . . . 4 β’ (-β(,)+β) = β | |
16 | 14, 15 | eqtrdi 2789 | . . 3 β’ (π΄ β β β ((-β(,)π΄) βͺ (π΄[,)+β)) = β) |
17 | ioossre 13385 | . . . 4 β’ (-β(,)π΄) β β | |
18 | 8, 9, 10 | ixxdisj 13339 | . . . . 5 β’ ((-β β β* β§ π΄ β β* β§ +β β β*) β ((-β(,)π΄) β© (π΄[,)+β)) = β ) |
19 | 1, 3, 5, 18 | mp3an2i 1467 | . . . 4 β’ (π΄ β β β ((-β(,)π΄) β© (π΄[,)+β)) = β ) |
20 | uneqdifeq 4493 | . . . 4 β’ (((-β(,)π΄) β β β§ ((-β(,)π΄) β© (π΄[,)+β)) = β ) β (((-β(,)π΄) βͺ (π΄[,)+β)) = β β (β β (-β(,)π΄)) = (π΄[,)+β))) | |
21 | 17, 19, 20 | sylancr 588 | . . 3 β’ (π΄ β β β (((-β(,)π΄) βͺ (π΄[,)+β)) = β β (β β (-β(,)π΄)) = (π΄[,)+β))) |
22 | 16, 21 | mpbid 231 | . 2 β’ (π΄ β β β (β β (-β(,)π΄)) = (π΄[,)+β)) |
23 | retop 24278 | . . 3 β’ (topGenβran (,)) β Top | |
24 | iooretop 24282 | . . 3 β’ (-β(,)π΄) β (topGenβran (,)) | |
25 | uniretop 24279 | . . . 4 β’ β = βͺ (topGenβran (,)) | |
26 | 25 | opncld 22537 | . . 3 β’ (((topGenβran (,)) β Top β§ (-β(,)π΄) β (topGenβran (,))) β (β β (-β(,)π΄)) β (Clsdβ(topGenβran (,)))) |
27 | 23, 24, 26 | mp2an 691 | . 2 β’ (β β (-β(,)π΄)) β (Clsdβ(topGenβran (,))) |
28 | 22, 27 | eqeltrrdi 2843 | 1 β’ (π΄ β β β (π΄[,)+β) β (Clsdβ(topGenβran (,)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β cdif 3946 βͺ cun 3947 β© cin 3948 β wss 3949 β c0 4323 class class class wbr 5149 ran crn 5678 βcfv 6544 (class class class)co 7409 βcr 11109 +βcpnf 11245 -βcmnf 11246 β*cxr 11247 < clt 11248 β€ cle 11249 (,)cioo 13324 [,)cico 13326 topGenctg 17383 Topctop 22395 Clsdccld 22520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-ioo 13328 df-ico 13330 df-topgen 17389 df-top 22396 df-bases 22449 df-cld 22523 |
This theorem is referenced by: sxbrsigalem3 33271 orvcgteel 33466 dvasin 36572 dvacos 36573 dvreasin 36574 dvreacos 36575 rfcnpre3 43717 |
Copyright terms: Public domain | W3C validator |