| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| iooss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo 13366 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | xrlelttr 13172 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝑤) → 𝐴 < 𝑤)) | |
| 3 | 1, 1, 2 | ixxss1 13380 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 (,)cioo 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 |
| This theorem is referenced by: ioodisj 13499 tgqioo 24739 ioorcl2 25525 itg2gt0 25713 itgsplitioo 25791 ditgcl 25811 ditgswap 25812 ditgsplitlem 25813 dvferm1lem 25940 dvferm 25944 dvlip 25950 dvgt0lem1 25959 dvivthlem1 25965 lhop1lem 25970 lhop2 25972 dvcvx 25977 dvfsumle 25978 dvfsumleOLD 25979 dvfsumge 25980 dvfsumabs 25981 ftc1lem1 25994 ftc1a 25996 ftc1lem4 25998 ftc2ditglem 26004 tanregt0 26500 basellem4 27046 pntlemp 27573 radcnvrat 44338 limcresiooub 45671 fourierdlem46 46181 fourierdlem48 46183 fourierdlem49 46184 fourierdlem74 46209 fourierdlem104 46239 fourierdlem113 46248 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |