MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooss1 Structured version   Visualization version   GIF version

Theorem iooss1 13394
Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iooss1 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))

Proof of Theorem iooss1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 13363 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 xrlelttr 13170 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝑤) → 𝐴 < 𝑤))
31, 1, 2ixxss1 13377 1 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wss 3944   class class class wbr 5149  (class class class)co 7419  *cxr 11279   < clt 11280  cle 11281  (,)cioo 13359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-ioo 13363
This theorem is referenced by:  ioodisj  13494  tgqioo  24760  ioorcl2  25545  itg2gt0  25734  itgsplitioo  25811  ditgcl  25831  ditgswap  25832  ditgsplitlem  25833  dvferm1lem  25960  dvferm  25964  dvlip  25970  dvgt0lem1  25979  dvivthlem1  25985  lhop1lem  25990  lhop2  25992  dvcvx  25997  dvfsumle  25998  dvfsumleOLD  25999  dvfsumge  26000  dvfsumabs  26001  ftc1lem1  26014  ftc1a  26016  ftc1lem4  26018  ftc2ditglem  26024  tanregt0  26518  basellem4  27061  pntlemp  27588  radcnvrat  43893  limcresiooub  45168  fourierdlem46  45678  fourierdlem48  45680  fourierdlem49  45681  fourierdlem74  45706  fourierdlem104  45736  fourierdlem113  45745  fouriersw  45757
  Copyright terms: Public domain W3C validator