| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooss2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| iooss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo 13317 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | xrltletr 13124 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝑤 < 𝐶)) | |
| 3 | 1, 1, 2 | ixxss2 13332 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 (class class class)co 7390 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 |
| This theorem is referenced by: tgqioo 24695 ioorcl2 25480 itgsplitioo 25746 ditgcl 25766 ditgswap 25767 ditgsplitlem 25768 dvferm2lem 25897 dvferm 25899 dvlip 25905 dvgt0lem1 25914 dvivthlem1 25920 lhop1lem 25925 lhop1 25926 dvcvx 25932 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 ftc1lem1 25949 ftc1lem2 25950 ftc1a 25951 ftc1lem4 25953 ftc2 25958 ftc2ditglem 25959 itgsubstlem 25962 cos0pilt1 26448 ftc1anc 37702 ftc2nc 37703 limcresioolb 45648 fourierdlem46 46157 fourierdlem48 46159 fourierdlem49 46160 fourierdlem75 46186 fourierdlem103 46214 fourierdlem113 46224 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |