MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooss2 Structured version   Visualization version   GIF version

Theorem iooss2 13416
Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooss2 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))

Proof of Theorem iooss2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 13384 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 xrltletr 13192 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤 < 𝐵𝐵𝐶) → 𝑤 < 𝐶))
31, 1, 2ixxss2 13399 1 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wss 3947   class class class wbr 5155  (class class class)co 7426  *cxr 11299   < clt 11300  cle 11301  (,)cioo 13380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-pre-lttri 11234  ax-pre-lttrn 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-po 5596  df-so 5597  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8005  df-2nd 8006  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-ioo 13384
This theorem is referenced by:  tgqioo  24810  ioorcl2  25595  itgsplitioo  25861  ditgcl  25881  ditgswap  25882  ditgsplitlem  25883  dvferm2lem  26012  dvferm  26014  dvlip  26020  dvgt0lem1  26029  dvivthlem1  26035  lhop1lem  26040  lhop1  26041  dvcvx  26047  dvfsumle  26048  dvfsumleOLD  26049  dvfsumge  26050  dvfsumabs  26051  ftc1lem1  26064  ftc1lem2  26065  ftc1a  26066  ftc1lem4  26068  ftc2  26073  ftc2ditglem  26074  itgsubstlem  26077  cos0pilt1  26562  ftc1anc  37404  ftc2nc  37405  limcresioolb  45282  fourierdlem46  45791  fourierdlem48  45793  fourierdlem49  45794  fourierdlem75  45820  fourierdlem103  45848  fourierdlem113  45858  fouriersw  45870
  Copyright terms: Public domain W3C validator