| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooss2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| iooss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo 13391 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | xrltletr 13199 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝑤 < 𝐶)) | |
| 3 | 1, 1, 2 | ixxss2 13406 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 (,)cioo 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-ioo 13391 |
| This theorem is referenced by: tgqioo 24821 ioorcl2 25607 itgsplitioo 25873 ditgcl 25893 ditgswap 25894 ditgsplitlem 25895 dvferm2lem 26024 dvferm 26026 dvlip 26032 dvgt0lem1 26041 dvivthlem1 26047 lhop1lem 26052 lhop1 26053 dvcvx 26059 dvfsumle 26060 dvfsumleOLD 26061 dvfsumge 26062 dvfsumabs 26063 ftc1lem1 26076 ftc1lem2 26077 ftc1a 26078 ftc1lem4 26080 ftc2 26085 ftc2ditglem 26086 itgsubstlem 26089 cos0pilt1 26574 ftc1anc 37708 ftc2nc 37709 limcresioolb 45658 fourierdlem46 46167 fourierdlem48 46169 fourierdlem49 46170 fourierdlem75 46196 fourierdlem103 46224 fourierdlem113 46234 fouriersw 46246 |
| Copyright terms: Public domain | W3C validator |