Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatopafv2b Structured version   Visualization version   GIF version

Theorem dfatopafv2b 44738
Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb 6823 or funopfvb 6825. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatopafv2b ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))

Proof of Theorem dfatopafv2b
StepHypRef Expression
1 dfatbrafv2b 44737 . 2 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
2 df-br 5075 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
31, 2bitrdi 287 1 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-dfat 44611  df-afv2 44701
This theorem is referenced by:  dfatdmfcoafv2  44746
  Copyright terms: Public domain W3C validator