![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabord | Structured version Visualization version GIF version |
Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
Ref | Expression |
---|---|
nadd2rabord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4075 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐴 | |
2 | ordsson 7782 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 2 | 3ad2ant1 1130 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
4 | 1, 3 | sstrid 3992 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ On) |
5 | nadd2rabtr 43086 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | |
6 | dford5 7783 | . 2 ⊢ (Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ({𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ On ∧ Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})) | |
7 | 4, 5, 6 | sylanbrc 581 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2099 {crab 3420 ⊆ wss 3948 Tr wtr 5262 Ord word 6366 Oncon0 6367 (class class class)co 7415 +no cnadd 8686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7994 df-2nd 7995 df-frecs 8287 df-nadd 8687 |
This theorem is referenced by: nadd2rabon 43089 |
Copyright terms: Public domain | W3C validator |