| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabord | Structured version Visualization version GIF version | ||
| Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd2rabord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4055 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐴 | |
| 2 | ordsson 7777 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
| 4 | 1, 3 | sstrid 3970 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ On) |
| 5 | nadd2rabtr 43408 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | |
| 6 | dford5 7778 | . 2 ⊢ (Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ↔ ({𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ On ∧ Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})) | |
| 7 | 4, 5, 6 | sylanbrc 583 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 Tr wtr 5229 Ord word 6351 Oncon0 6352 (class class class)co 7405 +no cnadd 8677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-nadd 8678 |
| This theorem is referenced by: nadd2rabon 43411 |
| Copyright terms: Public domain | W3C validator |