| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd1rabord | Structured version Visualization version GIF version | ||
| Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd1rabord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4080 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ 𝐴 | |
| 2 | ordsson 7803 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 2 | 3ad2ant1 1134 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
| 4 | 1, 3 | sstrid 3995 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On) |
| 5 | nadd1rabtr 43401 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | |
| 6 | dford5 7804 | . 2 ⊢ (Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ↔ ({𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On ∧ Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})) | |
| 7 | 4, 5, 6 | sylanbrc 583 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 Tr wtr 5259 Ord word 6383 Oncon0 6384 (class class class)co 7431 +no cnadd 8703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-frecs 8306 df-nadd 8704 |
| This theorem is referenced by: nadd1rabon 43404 |
| Copyright terms: Public domain | W3C validator |