Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd1rabord Structured version   Visualization version   GIF version

Theorem nadd1rabord 42882
Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd1rabord ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd1rabord
StepHypRef Expression
1 ssrab2 4069 . . 3 {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ 𝐴
2 ordsson 7782 . . . 4 (Ord 𝐴𝐴 ⊆ On)
323ad2ant1 1130 . . 3 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On)
41, 3sstrid 3984 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On)
5 nadd1rabtr 42881 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
6 dford5 7783 . 2 (Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ↔ ({𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On ∧ Tr {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}))
74, 5, 6sylanbrc 581 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2098  {crab 3419  wss 3940  Tr wtr 5260  Ord word 6363  Oncon0 6364  (class class class)co 7415   +no cnadd 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-frecs 8283  df-nadd 8683
This theorem is referenced by:  nadd1rabon  42884
  Copyright terms: Public domain W3C validator