Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd1rabord Structured version   Visualization version   GIF version

Theorem nadd1rabord 43402
Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd1rabord ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd1rabord
StepHypRef Expression
1 ssrab2 4080 . . 3 {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ 𝐴
2 ordsson 7803 . . . 4 (Ord 𝐴𝐴 ⊆ On)
323ad2ant1 1134 . . 3 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On)
41, 3sstrid 3995 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On)
5 nadd1rabtr 43401 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
6 dford5 7804 . 2 (Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ↔ ({𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On ∧ Tr {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}))
74, 5, 6sylanbrc 583 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  {crab 3436  wss 3951  Tr wtr 5259  Ord word 6383  Oncon0 6384  (class class class)co 7431   +no cnadd 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-nadd 8704
This theorem is referenced by:  nadd1rabon  43404
  Copyright terms: Public domain W3C validator