![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd1rabord | Structured version Visualization version GIF version |
Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
Ref | Expression |
---|---|
nadd1rabord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4078 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ 𝐴 | |
2 | ordsson 7770 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 2 | 3ad2ant1 1134 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
4 | 1, 3 | sstrid 3994 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On) |
5 | nadd1rabtr 42138 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | |
6 | dford5 7771 | . 2 ⊢ (Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ↔ ({𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ⊆ On ∧ Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶})) | |
7 | 4, 5, 6 | sylanbrc 584 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 {crab 3433 ⊆ wss 3949 Tr wtr 5266 Ord word 6364 Oncon0 6365 (class class class)co 7409 +no cnadd 8664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-frecs 8266 df-nadd 8665 |
This theorem is referenced by: nadd1rabon 42141 |
Copyright terms: Public domain | W3C validator |