| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6311 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7711 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 Ord word 6300 Oncon0 6301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 |
| This theorem is referenced by: onuni 7716 onminex 7730 onssi 7763 tfi 7778 soseq 8084 tfr3 8313 tz7.49 8359 tz7.49c 8360 oacomf1olem 8474 oeeulem 8511 cofonr 8584 naddcllem 8586 naddov2 8589 naddunif 8603 naddasslem1 8604 naddasslem2 8605 ordtypelem2 9400 cantnfcl 9552 cantnflt 9557 cantnfp1lem3 9565 oemapvali 9569 cantnflem1c 9572 cantnflem1d 9573 cantnflem1 9574 cantnf 9578 cnfcom 9585 cnfcom3lem 9588 infxpenlem 9899 ac10ct 9920 dfac12lem1 10030 dfac12lem2 10031 cfeq0 10142 cfsuc 10143 cff1 10144 cfflb 10145 cofsmo 10155 cfsmolem 10156 alephsing 10162 zorn2lem2 10383 ttukeylem3 10397 ttukeylem5 10399 ttukeylem6 10400 inar1 10661 nosupno 27637 elold 27809 madefi 27853 oldfi 27854 ontgval 36465 aomclem6 43092 tfsconcatlem 43369 tfsconcatfv 43374 ofoafo 43389 ofoaid1 43391 ofoaid2 43392 dfno2 43461 |
| Copyright terms: Public domain | W3C validator |