| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7719 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 Ord word 6306 Oncon0 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 |
| This theorem is referenced by: onuni 7724 onminex 7738 onssi 7771 tfi 7786 soseq 8092 tfr3 8321 tz7.49 8367 tz7.49c 8368 oacomf1olem 8482 oeeulem 8519 cofonr 8592 naddcllem 8594 naddov2 8597 naddunif 8611 naddasslem1 8612 naddasslem2 8613 ordtypelem2 9411 cantnfcl 9563 cantnflt 9568 cantnfp1lem3 9576 oemapvali 9580 cantnflem1c 9583 cantnflem1d 9584 cantnflem1 9585 cantnf 9589 cnfcom 9596 cnfcom3lem 9599 infxpenlem 9907 ac10ct 9928 dfac12lem1 10038 dfac12lem2 10039 cfeq0 10150 cfsuc 10151 cff1 10152 cfflb 10153 cofsmo 10163 cfsmolem 10164 alephsing 10170 zorn2lem2 10391 ttukeylem3 10405 ttukeylem5 10407 ttukeylem6 10408 inar1 10669 nosupno 27613 elold 27783 madefi 27827 oldfi 27828 ontgval 36405 aomclem6 43032 tfsconcatlem 43309 tfsconcatfv 43314 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 dfno2 43401 |
| Copyright terms: Public domain | W3C validator |