| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6324 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7725 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 Ord word 6313 Oncon0 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 |
| This theorem is referenced by: onuni 7730 onminex 7744 onssi 7777 tfi 7792 soseq 8098 tfr3 8327 tz7.49 8373 tz7.49c 8374 oacomf1olem 8488 oeeulem 8525 cofonr 8598 naddcllem 8600 naddov2 8603 naddunif 8617 naddasslem1 8618 naddasslem2 8619 ordtypelem2 9416 cantnfcl 9568 cantnflt 9573 cantnfp1lem3 9581 oemapvali 9585 cantnflem1c 9588 cantnflem1d 9589 cantnflem1 9590 cantnf 9594 cnfcom 9601 cnfcom3lem 9604 infxpenlem 9915 ac10ct 9936 dfac12lem1 10046 dfac12lem2 10047 cfeq0 10158 cfsuc 10159 cff1 10160 cfflb 10161 cofsmo 10171 cfsmolem 10172 alephsing 10178 zorn2lem2 10399 ttukeylem3 10413 ttukeylem5 10415 ttukeylem6 10416 inar1 10677 nosupno 27662 elold 27834 madefi 27878 oldfi 27879 ontgval 36547 aomclem6 43216 tfsconcatlem 43493 tfsconcatfv 43498 ofoafo 43513 ofoaid1 43515 ofoaid2 43516 dfno2 43585 |
| Copyright terms: Public domain | W3C validator |