| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7759 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onuni 7764 onminex 7778 sucexeloniOLD 7786 onssi 7813 tfi 7829 soseq 8138 tfr3 8367 tz7.49 8413 tz7.49c 8414 oacomf1olem 8528 oeeulem 8565 cofonr 8638 naddcllem 8640 naddov2 8643 naddunif 8657 naddasslem1 8658 naddasslem2 8659 ordtypelem2 9472 cantnfcl 9620 cantnflt 9625 cantnfp1lem3 9633 oemapvali 9637 cantnflem1c 9640 cantnflem1d 9641 cantnflem1 9642 cantnf 9646 cnfcom 9653 cnfcom3lem 9656 infxpenlem 9966 ac10ct 9987 dfac12lem1 10097 dfac12lem2 10098 cfeq0 10209 cfsuc 10210 cff1 10211 cfflb 10212 cofsmo 10222 cfsmolem 10223 alephsing 10229 zorn2lem2 10450 ttukeylem3 10464 ttukeylem5 10466 ttukeylem6 10467 inar1 10728 nosupno 27615 elold 27781 madefi 27824 oldfi 27825 ontgval 36419 aomclem6 43048 tfsconcatlem 43325 tfsconcatfv 43330 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 dfno2 43417 |
| Copyright terms: Public domain | W3C validator |