| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6375 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7786 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3933 Ord word 6364 Oncon0 6365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 |
| This theorem is referenced by: onuni 7791 onminex 7805 sucexeloniOLD 7813 suceloniOLD 7815 onssi 7841 tfi 7857 soseq 8167 tfr3 8422 tz7.49 8468 tz7.49c 8469 oacomf1olem 8585 oeeulem 8622 cofonr 8695 naddcllem 8697 naddov2 8700 naddunif 8714 naddasslem1 8715 naddasslem2 8716 ordtypelem2 9542 cantnfcl 9690 cantnflt 9695 cantnfp1lem3 9703 oemapvali 9707 cantnflem1c 9710 cantnflem1d 9711 cantnflem1 9712 cantnf 9716 cnfcom 9723 cnfcom3lem 9726 infxpenlem 10036 ac10ct 10057 dfac12lem1 10167 dfac12lem2 10168 cfeq0 10279 cfsuc 10280 cff1 10281 cfflb 10282 cofsmo 10292 cfsmolem 10293 alephsing 10299 zorn2lem2 10520 ttukeylem3 10534 ttukeylem5 10536 ttukeylem6 10537 inar1 10798 nosupno 27703 elold 27863 madefi 27905 oldfi 27906 ontgval 36373 aomclem6 43016 tfsconcatlem 43294 tfsconcatfv 43299 ofoafo 43314 ofoaid1 43316 ofoaid2 43317 dfno2 43386 |
| Copyright terms: Public domain | W3C validator |