Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7610 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: predonOLD 7613 onuni 7615 onminex 7629 suceloni 7635 onssi 7659 tfi 7675 tfr3 8201 tz7.49 8246 tz7.49c 8247 oacomf1olem 8357 oeeulem 8394 ordtypelem2 9208 cantnfcl 9355 cantnflt 9360 cantnfp1lem3 9368 oemapvali 9372 cantnflem1c 9375 cantnflem1d 9376 cantnflem1 9377 cantnf 9381 cnfcom 9388 cnfcom3lem 9391 infxpenlem 9700 ac10ct 9721 dfac12lem1 9830 dfac12lem2 9831 cfeq0 9943 cfsuc 9944 cff1 9945 cfflb 9946 cofsmo 9956 cfsmolem 9957 alephsing 9963 zorn2lem2 10184 ttukeylem3 10198 ttukeylem5 10200 ttukeylem6 10201 inar1 10462 soseq 33730 naddcllem 33758 naddov2 33761 nosupno 33833 elold 33980 ontgval 34547 aomclem6 40800 |
Copyright terms: Public domain | W3C validator |