Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6275 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7627 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ⊆ wss 3892 Ord word 6264 Oncon0 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6268 df-on 6269 |
This theorem is referenced by: predonOLD 7630 onuni 7632 onminex 7646 sucexeloni 7652 suceloniOLD 7654 onssi 7678 tfi 7694 tfr3 8221 tz7.49 8267 tz7.49c 8268 oacomf1olem 8380 oeeulem 8417 ordtypelem2 9256 cantnfcl 9403 cantnflt 9408 cantnfp1lem3 9416 oemapvali 9420 cantnflem1c 9423 cantnflem1d 9424 cantnflem1 9425 cantnf 9429 cnfcom 9436 cnfcom3lem 9439 infxpenlem 9770 ac10ct 9791 dfac12lem1 9900 dfac12lem2 9901 cfeq0 10013 cfsuc 10014 cff1 10015 cfflb 10016 cofsmo 10026 cfsmolem 10027 alephsing 10033 zorn2lem2 10254 ttukeylem3 10268 ttukeylem5 10270 ttukeylem6 10271 inar1 10532 soseq 33799 naddcllem 33827 naddov2 33830 nosupno 33902 elold 34049 ontgval 34616 aomclem6 40881 |
Copyright terms: Public domain | W3C validator |