MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onss Structured version   Visualization version   GIF version

Theorem onss 7507
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
onss (𝐴 ∈ On → 𝐴 ⊆ On)

Proof of Theorem onss
StepHypRef Expression
1 eloni 6203 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordsson 7506 . 2 (Ord 𝐴𝐴 ⊆ On)
31, 2syl 17 1 (𝐴 ∈ On → 𝐴 ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wss 3938  Ord word 6192  Oncon0 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197
This theorem is referenced by:  predon  7508  onuni  7510  onminex  7524  suceloni  7530  onssi  7554  tfi  7570  tfr3  8037  tz7.49  8083  tz7.49c  8084  oacomf1olem  8192  oeeulem  8229  ordtypelem2  8985  cantnfcl  9132  cantnflt  9137  cantnfp1lem3  9145  oemapvali  9149  cantnflem1c  9152  cantnflem1d  9153  cantnflem1  9154  cantnf  9158  cnfcom  9165  cnfcom3lem  9168  infxpenlem  9441  ac10ct  9462  dfac12lem1  9571  dfac12lem2  9572  cfeq0  9680  cfsuc  9681  cff1  9682  cfflb  9683  cofsmo  9693  cfsmolem  9694  alephsing  9700  zorn2lem2  9921  ttukeylem3  9935  ttukeylem5  9937  ttukeylem6  9938  inar1  10199  soseq  33098  nosupno  33205  ontgval  33781  aomclem6  39666
  Copyright terms: Public domain W3C validator