| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6367 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7782 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 Ord word 6356 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: onuni 7787 onminex 7801 sucexeloniOLD 7809 suceloniOLD 7811 onssi 7837 tfi 7853 soseq 8163 tfr3 8418 tz7.49 8464 tz7.49c 8465 oacomf1olem 8581 oeeulem 8618 cofonr 8691 naddcllem 8693 naddov2 8696 naddunif 8710 naddasslem1 8711 naddasslem2 8712 ordtypelem2 9538 cantnfcl 9686 cantnflt 9691 cantnfp1lem3 9699 oemapvali 9703 cantnflem1c 9706 cantnflem1d 9707 cantnflem1 9708 cantnf 9712 cnfcom 9719 cnfcom3lem 9722 infxpenlem 10032 ac10ct 10053 dfac12lem1 10163 dfac12lem2 10164 cfeq0 10275 cfsuc 10276 cff1 10277 cfflb 10278 cofsmo 10288 cfsmolem 10289 alephsing 10295 zorn2lem2 10516 ttukeylem3 10530 ttukeylem5 10532 ttukeylem6 10533 inar1 10794 nosupno 27672 elold 27838 madefi 27881 oldfi 27882 ontgval 36454 aomclem6 43058 tfsconcatlem 43335 tfsconcatfv 43340 ofoafo 43355 ofoaid1 43357 ofoaid2 43358 dfno2 43427 |
| Copyright terms: Public domain | W3C validator |