![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7818 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: predonOLD 7822 onuni 7824 onminex 7838 sucexeloniOLD 7846 suceloniOLD 7848 onssi 7874 tfi 7890 soseq 8200 tfr3 8455 tz7.49 8501 tz7.49c 8502 oacomf1olem 8620 oeeulem 8657 cofonr 8730 naddcllem 8732 naddov2 8735 naddunif 8749 naddasslem1 8750 naddasslem2 8751 ordtypelem2 9588 cantnfcl 9736 cantnflt 9741 cantnfp1lem3 9749 oemapvali 9753 cantnflem1c 9756 cantnflem1d 9757 cantnflem1 9758 cantnf 9762 cnfcom 9769 cnfcom3lem 9772 infxpenlem 10082 ac10ct 10103 dfac12lem1 10213 dfac12lem2 10214 cfeq0 10325 cfsuc 10326 cff1 10327 cfflb 10328 cofsmo 10338 cfsmolem 10339 alephsing 10345 zorn2lem2 10566 ttukeylem3 10580 ttukeylem5 10582 ttukeylem6 10583 inar1 10844 nosupno 27766 elold 27926 madefi 27968 oldfi 27969 ontgval 36397 aomclem6 43016 tfsconcatlem 43298 tfsconcatfv 43303 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 dfno2 43390 |
Copyright terms: Public domain | W3C validator |