| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsson 7739 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: onuni 7744 onminex 7758 sucexeloniOLD 7766 onssi 7793 tfi 7809 soseq 8115 tfr3 8344 tz7.49 8390 tz7.49c 8391 oacomf1olem 8505 oeeulem 8542 cofonr 8615 naddcllem 8617 naddov2 8620 naddunif 8634 naddasslem1 8635 naddasslem2 8636 ordtypelem2 9448 cantnfcl 9596 cantnflt 9601 cantnfp1lem3 9609 oemapvali 9613 cantnflem1c 9616 cantnflem1d 9617 cantnflem1 9618 cantnf 9622 cnfcom 9629 cnfcom3lem 9632 infxpenlem 9942 ac10ct 9963 dfac12lem1 10073 dfac12lem2 10074 cfeq0 10185 cfsuc 10186 cff1 10187 cfflb 10188 cofsmo 10198 cfsmolem 10199 alephsing 10205 zorn2lem2 10426 ttukeylem3 10440 ttukeylem5 10442 ttukeylem6 10443 inar1 10704 nosupno 27591 elold 27757 madefi 27800 oldfi 27801 ontgval 36392 aomclem6 43021 tfsconcatlem 43298 tfsconcatfv 43303 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 dfno2 43390 |
| Copyright terms: Public domain | W3C validator |