Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6223 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7567 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ⊆ wss 3866 Ord word 6212 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: predonOLD 7570 onuni 7572 onminex 7586 suceloni 7592 onssi 7616 tfi 7632 tfr3 8135 tz7.49 8181 tz7.49c 8182 oacomf1olem 8292 oeeulem 8329 ordtypelem2 9135 cantnfcl 9282 cantnflt 9287 cantnfp1lem3 9295 oemapvali 9299 cantnflem1c 9302 cantnflem1d 9303 cantnflem1 9304 cantnf 9308 cnfcom 9315 cnfcom3lem 9318 infxpenlem 9627 ac10ct 9648 dfac12lem1 9757 dfac12lem2 9758 cfeq0 9870 cfsuc 9871 cff1 9872 cfflb 9873 cofsmo 9883 cfsmolem 9884 alephsing 9890 zorn2lem2 10111 ttukeylem3 10125 ttukeylem5 10127 ttukeylem6 10128 inar1 10389 soseq 33540 naddcllem 33568 naddov2 33571 nosupno 33643 elold 33790 ontgval 34357 aomclem6 40587 |
Copyright terms: Public domain | W3C validator |