Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7633 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: predonOLD 7636 onuni 7638 onminex 7652 sucexeloni 7658 suceloniOLD 7660 onssi 7684 tfi 7700 tfr3 8230 tz7.49 8276 tz7.49c 8277 oacomf1olem 8395 oeeulem 8432 ordtypelem2 9278 cantnfcl 9425 cantnflt 9430 cantnfp1lem3 9438 oemapvali 9442 cantnflem1c 9445 cantnflem1d 9446 cantnflem1 9447 cantnf 9451 cnfcom 9458 cnfcom3lem 9461 infxpenlem 9769 ac10ct 9790 dfac12lem1 9899 dfac12lem2 9900 cfeq0 10012 cfsuc 10013 cff1 10014 cfflb 10015 cofsmo 10025 cfsmolem 10026 alephsing 10032 zorn2lem2 10253 ttukeylem3 10267 ttukeylem5 10269 ttukeylem6 10270 inar1 10531 soseq 33803 naddcllem 33831 naddov2 33834 nosupno 33906 elold 34053 ontgval 34620 aomclem6 40884 |
Copyright terms: Public domain | W3C validator |