![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onss | Structured version Visualization version GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6396 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 7802 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: predonOLD 7806 onuni 7808 onminex 7822 sucexeloniOLD 7830 suceloniOLD 7832 onssi 7858 tfi 7874 soseq 8183 tfr3 8438 tz7.49 8484 tz7.49c 8485 oacomf1olem 8601 oeeulem 8638 cofonr 8711 naddcllem 8713 naddov2 8716 naddunif 8730 naddasslem1 8731 naddasslem2 8732 ordtypelem2 9557 cantnfcl 9705 cantnflt 9710 cantnfp1lem3 9718 oemapvali 9722 cantnflem1c 9725 cantnflem1d 9726 cantnflem1 9727 cantnf 9731 cnfcom 9738 cnfcom3lem 9741 infxpenlem 10051 ac10ct 10072 dfac12lem1 10182 dfac12lem2 10183 cfeq0 10294 cfsuc 10295 cff1 10296 cfflb 10297 cofsmo 10307 cfsmolem 10308 alephsing 10314 zorn2lem2 10535 ttukeylem3 10549 ttukeylem5 10551 ttukeylem6 10552 inar1 10813 nosupno 27763 elold 27923 madefi 27965 oldfi 27966 ontgval 36414 aomclem6 43048 tfsconcatlem 43326 tfsconcatfv 43331 ofoafo 43346 ofoaid1 43348 ofoaid2 43349 dfno2 43418 |
Copyright terms: Public domain | W3C validator |