Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailf Structured version   Visualization version   GIF version

Theorem tailf 36341
Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailf.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailf (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)

Proof of Theorem tailf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 6100 . . . . . . 7 (𝐷 “ {𝑥}) ⊆ ran 𝐷
2 ssun2 4202 . . . . . . . 8 ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
3 dmrnssfld 5996 . . . . . . . 8 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
42, 3sstri 4018 . . . . . . 7 ran 𝐷 𝐷
51, 4sstri 4018 . . . . . 6 (𝐷 “ {𝑥}) ⊆ 𝐷
6 tailf.1 . . . . . . 7 𝑋 = dom 𝐷
7 dirdm 18670 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
86, 7eqtr2id 2793 . . . . . 6 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
95, 8sseqtrid 4061 . . . . 5 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋)
10 dmexg 7941 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
116, 10eqeltrid 2848 . . . . . 6 (𝐷 ∈ DirRel → 𝑋 ∈ V)
12 elpw2g 5351 . . . . . 6 (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
1311, 12syl 17 . . . . 5 (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
149, 13mpbird 257 . . . 4 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
1514ralrimivw 3156 . . 3 (𝐷 ∈ DirRel → ∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
16 eqid 2740 . . . 4 (𝑥𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥}))
1716fmpt 7144 . . 3 (∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
1815, 17sylib 218 . 2 (𝐷 ∈ DirRel → (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
196tailfval 36338 . . 3 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
2019feq1d 6732 . 2 (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋))
2118, 20mpbird 257 1 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  cfv 6573  DirRelcdir 18664  tailctail 18665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-dir 18666  df-tail 18667
This theorem is referenced by:  tailfb  36343  filnetlem4  36347
  Copyright terms: Public domain W3C validator