| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tailf | Structured version Visualization version GIF version | ||
| Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailf.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| tailf | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6027 | . . . . . . 7 ⊢ (𝐷 “ {𝑥}) ⊆ ran 𝐷 | |
| 2 | ssun2 4130 | . . . . . . . 8 ⊢ ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷) | |
| 3 | dmrnssfld 5920 | . . . . . . . 8 ⊢ (dom 𝐷 ∪ ran 𝐷) ⊆ ∪ ∪ 𝐷 | |
| 4 | 2, 3 | sstri 3941 | . . . . . . 7 ⊢ ran 𝐷 ⊆ ∪ ∪ 𝐷 |
| 5 | 1, 4 | sstri 3941 | . . . . . 6 ⊢ (𝐷 “ {𝑥}) ⊆ ∪ ∪ 𝐷 |
| 6 | tailf.1 | . . . . . . 7 ⊢ 𝑋 = dom 𝐷 | |
| 7 | dirdm 18516 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
| 8 | 6, 7 | eqtr2id 2781 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
| 9 | 5, 8 | sseqtrid 3974 | . . . . 5 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋) |
| 10 | dmexg 7840 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 ∈ V) | |
| 11 | 6, 10 | eqeltrid 2837 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → 𝑋 ∈ V) |
| 12 | elpw2g 5275 | . . . . . 6 ⊢ (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) |
| 14 | 9, 13 | mpbird 257 | . . . 4 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
| 15 | 14 | ralrimivw 3130 | . . 3 ⊢ (𝐷 ∈ DirRel → ∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
| 16 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) | |
| 17 | 16 | fmpt 7052 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
| 18 | 15, 17 | sylib 218 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
| 19 | 6 | tailfval 36427 | . . 3 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| 20 | 19 | feq1d 6641 | . 2 ⊢ (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3049 Vcvv 3438 ∪ cun 3897 ⊆ wss 3899 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 ↦ cmpt 5176 dom cdm 5621 ran crn 5622 “ cima 5624 ⟶wf 6485 ‘cfv 6489 DirRelcdir 18510 tailctail 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-dir 18512 df-tail 18513 |
| This theorem is referenced by: tailfb 36432 filnetlem4 36436 |
| Copyright terms: Public domain | W3C validator |