Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailf | Structured version Visualization version GIF version |
Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailf.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
tailf | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5916 | . . . . . . 7 ⊢ (𝐷 “ {𝑥}) ⊆ ran 𝐷 | |
2 | ssun2 4080 | . . . . . . . 8 ⊢ ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷) | |
3 | dmrnssfld 5815 | . . . . . . . 8 ⊢ (dom 𝐷 ∪ ran 𝐷) ⊆ ∪ ∪ 𝐷 | |
4 | 2, 3 | sstri 3903 | . . . . . . 7 ⊢ ran 𝐷 ⊆ ∪ ∪ 𝐷 |
5 | 1, 4 | sstri 3903 | . . . . . 6 ⊢ (𝐷 “ {𝑥}) ⊆ ∪ ∪ 𝐷 |
6 | tailf.1 | . . . . . . 7 ⊢ 𝑋 = dom 𝐷 | |
7 | dirdm 17915 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
8 | 6, 7 | syl5req 2806 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
9 | 5, 8 | sseqtrid 3946 | . . . . 5 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋) |
10 | dmexg 7618 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 ∈ V) | |
11 | 6, 10 | eqeltrid 2856 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → 𝑋 ∈ V) |
12 | elpw2g 5217 | . . . . . 6 ⊢ (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) |
14 | 9, 13 | mpbird 260 | . . . 4 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
15 | 14 | ralrimivw 3114 | . . 3 ⊢ (𝐷 ∈ DirRel → ∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
16 | eqid 2758 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) | |
17 | 16 | fmpt 6870 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
18 | 15, 17 | sylib 221 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
19 | 6 | tailfval 34136 | . . 3 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
20 | 19 | feq1d 6487 | . 2 ⊢ (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)) |
21 | 18, 20 | mpbird 260 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∪ cun 3858 ⊆ wss 3860 𝒫 cpw 4497 {csn 4525 ∪ cuni 4801 ↦ cmpt 5115 dom cdm 5527 ran crn 5528 “ cima 5530 ⟶wf 6335 ‘cfv 6339 DirRelcdir 17909 tailctail 17910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-dir 17911 df-tail 17912 |
This theorem is referenced by: tailfb 34141 filnetlem4 34145 |
Copyright terms: Public domain | W3C validator |