Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailf Structured version   Visualization version   GIF version

Theorem tailf 33723
Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailf.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailf (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)

Proof of Theorem tailf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5940 . . . . . . 7 (𝐷 “ {𝑥}) ⊆ ran 𝐷
2 ssun2 4149 . . . . . . . 8 ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
3 dmrnssfld 5841 . . . . . . . 8 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
42, 3sstri 3976 . . . . . . 7 ran 𝐷 𝐷
51, 4sstri 3976 . . . . . 6 (𝐷 “ {𝑥}) ⊆ 𝐷
6 tailf.1 . . . . . . 7 𝑋 = dom 𝐷
7 dirdm 17844 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
86, 7syl5req 2869 . . . . . 6 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
95, 8sseqtrid 4019 . . . . 5 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋)
10 dmexg 7613 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
116, 10eqeltrid 2917 . . . . . 6 (𝐷 ∈ DirRel → 𝑋 ∈ V)
12 elpw2g 5247 . . . . . 6 (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
1311, 12syl 17 . . . . 5 (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
149, 13mpbird 259 . . . 4 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
1514ralrimivw 3183 . . 3 (𝐷 ∈ DirRel → ∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
16 eqid 2821 . . . 4 (𝑥𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥}))
1716fmpt 6874 . . 3 (∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
1815, 17sylib 220 . 2 (𝐷 ∈ DirRel → (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
196tailfval 33720 . . 3 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
2019feq1d 6499 . 2 (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋))
2118, 20mpbird 259 1 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cun 3934  wss 3936  𝒫 cpw 4539  {csn 4567   cuni 4838  cmpt 5146  dom cdm 5555  ran crn 5556  cima 5558  wf 6351  cfv 6355  DirRelcdir 17838  tailctail 17839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-dir 17840  df-tail 17841
This theorem is referenced by:  tailfb  33725  filnetlem4  33729
  Copyright terms: Public domain W3C validator