| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tailf | Structured version Visualization version GIF version | ||
| Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailf.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| tailf | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6042 | . . . . . . 7 ⊢ (𝐷 “ {𝑥}) ⊆ ran 𝐷 | |
| 2 | ssun2 4142 | . . . . . . . 8 ⊢ ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷) | |
| 3 | dmrnssfld 5937 | . . . . . . . 8 ⊢ (dom 𝐷 ∪ ran 𝐷) ⊆ ∪ ∪ 𝐷 | |
| 4 | 2, 3 | sstri 3956 | . . . . . . 7 ⊢ ran 𝐷 ⊆ ∪ ∪ 𝐷 |
| 5 | 1, 4 | sstri 3956 | . . . . . 6 ⊢ (𝐷 “ {𝑥}) ⊆ ∪ ∪ 𝐷 |
| 6 | tailf.1 | . . . . . . 7 ⊢ 𝑋 = dom 𝐷 | |
| 7 | dirdm 18559 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
| 8 | 6, 7 | eqtr2id 2777 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
| 9 | 5, 8 | sseqtrid 3989 | . . . . 5 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋) |
| 10 | dmexg 7877 | . . . . . . 7 ⊢ (𝐷 ∈ DirRel → dom 𝐷 ∈ V) | |
| 11 | 6, 10 | eqeltrid 2832 | . . . . . 6 ⊢ (𝐷 ∈ DirRel → 𝑋 ∈ V) |
| 12 | elpw2g 5288 | . . . . . 6 ⊢ (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋)) |
| 14 | 9, 13 | mpbird 257 | . . . 4 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
| 15 | 14 | ralrimivw 3129 | . . 3 ⊢ (𝐷 ∈ DirRel → ∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋) |
| 16 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) | |
| 17 | 16 | fmpt 7082 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
| 18 | 15, 17 | sylib 218 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋) |
| 19 | 6 | tailfval 36360 | . . 3 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| 20 | 19 | feq1d 6670 | . 2 ⊢ (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 DirRelcdir 18553 tailctail 18554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-dir 18555 df-tail 18556 |
| This theorem is referenced by: tailfb 36365 filnetlem4 36369 |
| Copyright terms: Public domain | W3C validator |