Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailf Structured version   Visualization version   GIF version

Theorem tailf 33241
Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailf.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailf (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)

Proof of Theorem tailf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5781 . . . . . . 7 (𝐷 “ {𝑥}) ⊆ ran 𝐷
2 ssun2 4039 . . . . . . . 8 ran 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
3 dmrnssfld 5683 . . . . . . . 8 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
42, 3sstri 3868 . . . . . . 7 ran 𝐷 𝐷
51, 4sstri 3868 . . . . . 6 (𝐷 “ {𝑥}) ⊆ 𝐷
6 tailf.1 . . . . . . 7 𝑋 = dom 𝐷
7 dirdm 17702 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
86, 7syl5req 2828 . . . . . 6 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
95, 8syl5sseq 3910 . . . . 5 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ⊆ 𝑋)
10 dmexg 7428 . . . . . . 7 (𝐷 ∈ DirRel → dom 𝐷 ∈ V)
116, 10syl5eqel 2871 . . . . . 6 (𝐷 ∈ DirRel → 𝑋 ∈ V)
12 elpw2g 5103 . . . . . 6 (𝑋 ∈ V → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
1311, 12syl 17 . . . . 5 (𝐷 ∈ DirRel → ((𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝐷 “ {𝑥}) ⊆ 𝑋))
149, 13mpbird 249 . . . 4 (𝐷 ∈ DirRel → (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
1514ralrimivw 3134 . . 3 (𝐷 ∈ DirRel → ∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋)
16 eqid 2779 . . . 4 (𝑥𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥}))
1716fmpt 6697 . . 3 (∀𝑥𝑋 (𝐷 “ {𝑥}) ∈ 𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
1815, 17sylib 210 . 2 (𝐷 ∈ DirRel → (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋)
196tailfval 33238 . . 3 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
2019feq1d 6329 . 2 (𝐷 ∈ DirRel → ((tail‘𝐷):𝑋⟶𝒫 𝑋 ↔ (𝑥𝑋 ↦ (𝐷 “ {𝑥})):𝑋⟶𝒫 𝑋))
2118, 20mpbird 249 1 (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wral 3089  Vcvv 3416  cun 3828  wss 3830  𝒫 cpw 4422  {csn 4441   cuni 4712  cmpt 5008  dom cdm 5407  ran crn 5408  cima 5410  wf 6184  cfv 6188  DirRelcdir 17696  tailctail 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-dir 17698  df-tail 17699
This theorem is referenced by:  tailfb  33243  filnetlem4  33247
  Copyright terms: Public domain W3C validator