![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxrn | Structured version Visualization version GIF version |
Description: The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
ecxrn | ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecxrn 37720 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
2 | 3anass 1094 | . . . . 5 ⊢ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
3 | 2 | 2exbii 1850 | . . . 4 ⊢ (∃𝑦∃𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ ∃𝑦∃𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) |
4 | 1, 3 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)))) |
5 | elopab 5527 | . . 3 ⊢ (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)} ↔ ∃𝑦∃𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
6 | 4, 5 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)})) |
7 | 6 | eqrdv 2729 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⟨cop 4634 class class class wbr 5148 {copab 5210 [cec 8707 ⋉ cxrn 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 df-2nd 7980 df-ec 8711 df-xrn 37705 |
This theorem is referenced by: disjecxrn 37723 br1cosscnvxrn 37808 |
Copyright terms: Public domain | W3C validator |