Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxrn | Structured version Visualization version GIF version |
Description: The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
ecxrn | ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecxrn 36443 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
2 | 3anass 1093 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
3 | 2 | 2exbii 1852 | . . . 4 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) |
4 | 1, 3 | bitrdi 286 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)))) |
5 | elopab 5433 | . . 3 ⊢ (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)} ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
6 | 4, 5 | bitr4di 288 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)})) |
7 | 6 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 [cec 8454 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-ec 8458 df-xrn 36428 |
This theorem is referenced by: br1cosscnvxrn 36519 |
Copyright terms: Public domain | W3C validator |