![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxrn | Structured version Visualization version GIF version |
Description: The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
ecxrn | ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecxrn 34642 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
2 | 3anass 1117 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
3 | 2 | 2exbii 1945 | . . . 4 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) |
4 | 1, 3 | syl6bb 279 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)))) |
5 | elopab 5179 | . . 3 ⊢ (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)} ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
6 | 4, 5 | syl6bbr 281 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)})) |
7 | 6 | eqrdv 2797 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 〈cop 4374 class class class wbr 4843 {copab 4905 [cec 7980 ⋉ cxrn 34468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fo 6107 df-fv 6109 df-1st 7401 df-2nd 7402 df-ec 7984 df-xrn 34627 |
This theorem is referenced by: br1cosscnvxrn 34718 |
Copyright terms: Public domain | W3C validator |