Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxrn Structured version   Visualization version   GIF version

Theorem ecxrn 37721
Description: The (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
ecxrn (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧   𝑦,𝑉,𝑧

Proof of Theorem ecxrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elecxrn 37720 . . . 4 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧)))
2 3anass 1094 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
322exbii 1850 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
41, 3bitrdi 287 . . 3 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧))))
5 elopab 5527 . . 3 (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
64, 5bitr4di 289 . 2 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ 𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)}))
76eqrdv 2729 1 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  cop 4634   class class class wbr 5148  {copab 5210  [cec 8707  cxrn 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-ec 8711  df-xrn 37705
This theorem is referenced by:  disjecxrn  37723  br1cosscnvxrn  37808
  Copyright terms: Public domain W3C validator