Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxrn Structured version   Visualization version   GIF version

Theorem ecxrn 38372
Description: The (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
ecxrn (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧   𝑦,𝑉,𝑧

Proof of Theorem ecxrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elecxrn 38371 . . . 4 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧)))
2 3anass 1094 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
322exbii 1849 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
41, 3bitrdi 287 . . 3 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧))))
5 elopab 5495 . . 3 (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
64, 5bitr4di 289 . 2 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ 𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)}))
76eqrdv 2728 1 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  cop 4603   class class class wbr 5115  {copab 5177  [cec 8680  cxrn 38165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fo 6525  df-fv 6527  df-1st 7977  df-2nd 7978  df-ec 8684  df-xrn 38356
This theorem is referenced by:  disjecxrn  38374  br1cosscnvxrn  38459
  Copyright terms: Public domain W3C validator