| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxrn | Structured version Visualization version GIF version | ||
| Description: The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| ecxrn | ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecxrn 38371 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
| 2 | 3anass 1094 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
| 3 | 2 | 2exbii 1849 | . . . 4 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) |
| 4 | 1, 3 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)))) |
| 5 | elopab 5495 | . . 3 ⊢ (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)} ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧))) | |
| 6 | 4, 5 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)})) |
| 7 | 6 | eqrdv 2728 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4603 class class class wbr 5115 {copab 5177 [cec 8680 ⋉ cxrn 38165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fo 6525 df-fv 6527 df-1st 7977 df-2nd 7978 df-ec 8684 df-xrn 38356 |
| This theorem is referenced by: disjecxrn 38374 br1cosscnvxrn 38459 |
| Copyright terms: Public domain | W3C validator |