MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfex Structured version   Visualization version   GIF version

Theorem dmfex 7945
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 6756 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 dmexg 7941 . . . 4 (𝐹𝐶 → dom 𝐹 ∈ V)
3 eleq1 2832 . . . 4 (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
42, 3imbitrid 244 . . 3 (dom 𝐹 = 𝐴 → (𝐹𝐶𝐴 ∈ V))
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹𝐶𝐴 ∈ V))
65impcom 407 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  dom cdm 5700  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-fn 6576  df-f 6577
This theorem is referenced by:  wemoiso  8014  mapfset  8908  mapfoss  8910  fopwdom  9146  fsuppssov1  9453  fowdom  9640  wdomfil  10130  fin23lem17  10407  fin23lem32  10413  fin23lem39  10419  enfin1ai  10453  fin1a2lem7  10475  symgbasmap  19418  lindfmm  21870  kelac1  43020
  Copyright terms: Public domain W3C validator