| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmfex | Structured version Visualization version GIF version | ||
| Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmfex | ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6714 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | dmexg 7895 | . . . 4 ⊢ (𝐹 ∈ 𝐶 → dom 𝐹 ∈ V) | |
| 3 | eleq1 2822 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) | |
| 4 | 2, 3 | imbitrid 244 | . . 3 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 407 | 1 ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 dom cdm 5654 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-fn 6533 df-f 6534 |
| This theorem is referenced by: wemoiso 7970 mapfset 8862 mapfoss 8864 fopwdom 9092 fsuppssov1 9394 fowdom 9583 wdomfil 10073 fin23lem17 10350 fin23lem32 10356 fin23lem39 10362 enfin1ai 10396 fin1a2lem7 10418 symgbasmap 19356 lindfmm 21785 kelac1 43034 |
| Copyright terms: Public domain | W3C validator |