![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmfex | Structured version Visualization version GIF version |
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dmfex | ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6731 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 7909 | . . . 4 ⊢ (𝐹 ∈ 𝐶 → dom 𝐹 ∈ V) | |
3 | eleq1 2817 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | imbitrid 243 | . . 3 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 dom cdm 5678 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-cnv 5686 df-dm 5688 df-rn 5689 df-fn 6551 df-f 6552 |
This theorem is referenced by: wemoiso 7977 mapfset 8869 mapfoss 8871 fopwdom 9105 fsuppssov1 9408 fowdom 9595 wdomfil 10085 fin23lem17 10362 fin23lem32 10368 fin23lem39 10374 enfin1ai 10408 fin1a2lem7 10430 symgbasmap 19331 lindfmm 21761 kelac1 42487 |
Copyright terms: Public domain | W3C validator |