MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfex Structured version   Visualization version   GIF version

Theorem dmfex 7894
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 6723 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 dmexg 7890 . . . 4 (𝐹𝐶 → dom 𝐹 ∈ V)
3 eleq1 2821 . . . 4 (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
42, 3imbitrid 243 . . 3 (dom 𝐹 = 𝐴 → (𝐹𝐶𝐴 ∈ V))
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹𝐶𝐴 ∈ V))
65impcom 408 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  dom cdm 5675  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-fn 6543  df-f 6544
This theorem is referenced by:  wemoiso  7956  mapfset  8840  mapfoss  8842  fopwdom  9076  fowdom  9562  wdomfil  10052  fin23lem17  10329  fin23lem32  10335  fin23lem39  10341  enfin1ai  10375  fin1a2lem7  10397  symgbasmap  19238  lindfmm  21373  kelac1  41790
  Copyright terms: Public domain W3C validator