![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmfex | Structured version Visualization version GIF version |
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dmfex | ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6745 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 7923 | . . . 4 ⊢ (𝐹 ∈ 𝐶 → dom 𝐹 ∈ V) | |
3 | eleq1 2826 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | imbitrid 244 | . . 3 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 dom cdm 5688 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 df-fn 6565 df-f 6566 |
This theorem is referenced by: wemoiso 7996 mapfset 8888 mapfoss 8890 fopwdom 9118 fsuppssov1 9421 fowdom 9608 wdomfil 10098 fin23lem17 10375 fin23lem32 10381 fin23lem39 10387 enfin1ai 10421 fin1a2lem7 10443 symgbasmap 19408 lindfmm 21864 kelac1 43051 |
Copyright terms: Public domain | W3C validator |