Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmfex | Structured version Visualization version GIF version |
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dmfex | ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6593 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 7724 | . . . 4 ⊢ (𝐹 ∈ 𝐶 → dom 𝐹 ∈ V) | |
3 | eleq1 2826 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | syl5ib 243 | . . 3 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
6 | 5 | impcom 407 | 1 ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 dom cdm 5580 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-fn 6421 df-f 6422 |
This theorem is referenced by: wemoiso 7789 mapfset 8596 mapfoss 8598 fopwdom 8820 fowdom 9260 wdomfil 9748 fin23lem17 10025 fin23lem32 10031 fin23lem39 10037 enfin1ai 10071 fin1a2lem7 10093 symgbasmap 18899 lindfmm 20944 kelac1 40804 |
Copyright terms: Public domain | W3C validator |