MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfex Structured version   Visualization version   GIF version

Theorem dmfex 7838
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 6661 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 dmexg 7834 . . . 4 (𝐹𝐶 → dom 𝐹 ∈ V)
3 eleq1 2816 . . . 4 (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
42, 3imbitrid 244 . . 3 (dom 𝐹 = 𝐴 → (𝐹𝐶𝐴 ∈ V))
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹𝐶𝐴 ∈ V))
65impcom 407 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  dom cdm 5619  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-fn 6485  df-f 6486
This theorem is referenced by:  wemoiso  7908  mapfset  8777  mapfoss  8779  fopwdom  9002  fsuppssov1  9274  fowdom  9463  wdomfil  9955  fin23lem17  10232  fin23lem32  10238  fin23lem39  10244  enfin1ai  10278  fin1a2lem7  10300  symgbasmap  19256  lindfmm  21734  kelac1  43036
  Copyright terms: Public domain W3C validator