MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Visualization version   GIF version

Theorem fin1a2lem7 10359
Description: Lemma for fin1a2 10368. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem7 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦)   𝐸(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fin1a2lem7
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano1 7865 . . . . . 6 ∅ ∈ ω
2 ne0i 4304 . . . . . 6 (∅ ∈ ω → ω ≠ ∅)
3 brwdomn0 9522 . . . . . 6 (ω ≠ ∅ → (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω))
41, 2, 3mp2b 10 . . . . 5 (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω)
5 vex 3451 . . . . . . . . . 10 𝑓 ∈ V
6 fof 6772 . . . . . . . . . 10 (𝑓:𝐴onto→ω → 𝑓:𝐴⟶ω)
7 dmfex 7881 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴⟶ω) → 𝐴 ∈ V)
85, 6, 7sylancr 587 . . . . . . . . 9 (𝑓:𝐴onto→ω → 𝐴 ∈ V)
9 cnvimass 6053 . . . . . . . . . 10 (𝑓 “ ran 𝐸) ⊆ dom 𝑓
109, 6fssdm 6707 . . . . . . . . 9 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ⊆ 𝐴)
118, 10sselpwd 5283 . . . . . . . 8 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ∈ 𝒫 𝐴)
12 fin1a2lem.b . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
1312fin1a2lem4 10356 . . . . . . . . . . . . 13 𝐸:ω–1-1→ω
14 f1cnv 6824 . . . . . . . . . . . . 13 (𝐸:ω–1-1→ω → 𝐸:ran 𝐸1-1-onto→ω)
15 f1ofo 6807 . . . . . . . . . . . . 13 (𝐸:ran 𝐸1-1-onto→ω → 𝐸:ran 𝐸onto→ω)
1613, 14, 15mp2b 10 . . . . . . . . . . . 12 𝐸:ran 𝐸onto→ω
17 fofun 6773 . . . . . . . . . . . 12 (𝐸:ran 𝐸onto→ω → Fun 𝐸)
1816, 17ax-mp 5 . . . . . . . . . . 11 Fun 𝐸
195resex 6000 . . . . . . . . . . 11 (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V
20 cofunexg 7927 . . . . . . . . . . 11 ((Fun 𝐸 ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V)
2118, 19, 20mp2an 692 . . . . . . . . . 10 (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V
22 fofun 6773 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → Fun 𝑓)
23 fores 6782 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝑓 “ ran 𝐸) ⊆ dom 𝑓) → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
2422, 9, 23sylancl 586 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
25 f1f 6756 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
26 frn 6695 . . . . . . . . . . . . . . 15 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
2713, 25, 26mp2b 10 . . . . . . . . . . . . . 14 ran 𝐸 ⊆ ω
28 foimacnv 6817 . . . . . . . . . . . . . 14 ((𝑓:𝐴onto→ω ∧ ran 𝐸 ⊆ ω) → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
2927, 28mpan2 691 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
30 foeq3 6770 . . . . . . . . . . . . 13 ((𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸 → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3129, 30syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3224, 31mpbid 232 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸)
33 foco 6786 . . . . . . . . . . 11 ((𝐸:ran 𝐸onto→ω ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
3416, 32, 33sylancr 587 . . . . . . . . . 10 (𝑓:𝐴onto→ω → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
35 fowdom 9524 . . . . . . . . . 10 (((𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V ∧ (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω) → ω ≼* (𝑓 “ ran 𝐸))
3621, 34, 35sylancr 587 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝑓 “ ran 𝐸))
375cnvex 7901 . . . . . . . . . . . 12 𝑓 ∈ V
3837imaex 7890 . . . . . . . . . . 11 (𝑓 “ ran 𝐸) ∈ V
39 isfin3-2 10320 . . . . . . . . . . 11 ((𝑓 “ ran 𝐸) ∈ V → ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸)))
4038, 39ax-mp 5 . . . . . . . . . 10 ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸))
4140con2bii 357 . . . . . . . . 9 (ω ≼* (𝑓 “ ran 𝐸) ↔ ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
4236, 41sylib 218 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
43 fin1a2lem.aa . . . . . . . . . . . . . . 15 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4412, 43fin1a2lem6 10358 . . . . . . . . . . . . . 14 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
45 f1ocnv 6812 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸) → (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸)
46 f1ofo 6807 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸)
4744, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸
48 foco 6786 . . . . . . . . . . . . 13 ((𝐸:ran 𝐸onto→ω ∧ (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) → (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω)
4916, 47, 48mp2an 692 . . . . . . . . . . . 12 (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω
50 fofun 6773 . . . . . . . . . . . 12 ((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω → Fun (𝐸(𝑆 ↾ ran 𝐸)))
5149, 50ax-mp 5 . . . . . . . . . . 11 Fun (𝐸(𝑆 ↾ ran 𝐸))
525resex 6000 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V
53 cofunexg 7927 . . . . . . . . . . 11 ((Fun (𝐸(𝑆 ↾ ran 𝐸)) ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V)
5451, 52, 53mp2an 692 . . . . . . . . . 10 ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V
55 difss 4099 . . . . . . . . . . . . . 14 (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ 𝐴
566fdmd 6698 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → dom 𝑓 = 𝐴)
5755, 56sseqtrrid 3990 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓)
58 fores 6782 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓) → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
5922, 57, 58syl2anc 584 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
60 funcnvcnv 6583 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → Fun 𝑓)
61 imadif 6600 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6222, 60, 613syl 18 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6362imaeq2d 6031 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))))
64 difss 4099 . . . . . . . . . . . . . . 15 (ω ∖ ran 𝐸) ⊆ ω
65 foimacnv 6817 . . . . . . . . . . . . . . 15 ((𝑓:𝐴onto→ω ∧ (ω ∖ ran 𝐸) ⊆ ω) → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
6664, 65mpan2 691 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
67 fimacnv 6710 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴⟶ω → (𝑓 “ ω) = 𝐴)
686, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝐴onto→ω → (𝑓 “ ω) = 𝐴)
6968difeq1d 4088 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
7069imaeq2d 6031 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))) = (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
7163, 66, 703eqtr3rd 2773 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸))
72 foeq3 6770 . . . . . . . . . . . . 13 ((𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸) → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7371, 72syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7459, 73mpbid 232 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))
75 foco 6786 . . . . . . . . . . 11 (((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
7649, 74, 75sylancr 587 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
77 fowdom 9524 . . . . . . . . . 10 ((((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V ∧ ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω) → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
7854, 76, 77sylancr 587 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
79 difexg 5284 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V)
80 isfin3-2 10320 . . . . . . . . . . 11 ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
818, 79, 803syl 18 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
8281con2bid 354 . . . . . . . . 9 (𝑓:𝐴onto→ω → (ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)) ↔ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8378, 82mpbid 232 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)
84 eleq1 2816 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → (𝑦 ∈ FinIII ↔ (𝑓 “ ran 𝐸) ∈ FinIII))
85 difeq2 4083 . . . . . . . . . . . . 13 (𝑦 = (𝑓 “ ran 𝐸) → (𝐴𝑦) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
8685eleq1d 2813 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → ((𝐴𝑦) ∈ FinIII ↔ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8784, 86orbi12d 918 . . . . . . . . . . 11 (𝑦 = (𝑓 “ ran 𝐸) → ((𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
8887notbid 318 . . . . . . . . . 10 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
89 ioran 985 . . . . . . . . . 10 (¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
9088, 89bitrdi 287 . . . . . . . . 9 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
9190rspcev 3588 . . . . . . . 8 (((𝑓 “ ran 𝐸) ∈ 𝒫 𝐴 ∧ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)) → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9211, 42, 83, 91syl12anc 836 . . . . . . 7 (𝑓:𝐴onto→ω → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
93 rexnal 3082 . . . . . . 7 (∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9492, 93sylib 218 . . . . . 6 (𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9594exlimiv 1930 . . . . 5 (∃𝑓 𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
964, 95sylbi 217 . . . 4 (ω ≼* 𝐴 → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9796con2i 139 . . 3 (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → ¬ ω ≼* 𝐴)
98 isfin3-2 10320 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))
9997, 98imbitrrid 246 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → 𝐴 ∈ FinIII))
10099imp 406 1 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642  Oncon0 6332  suc csuc 6334  Fun wfun 6505  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  (class class class)co 7387  ωcom 7842  2oc2o 8428   ·o comu 8432  * cwdom 9517  FinIIIcfin3 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wdom 9518  df-card 9892  df-fin4 10240  df-fin3 10241
This theorem is referenced by:  fin1a2lem8  10360
  Copyright terms: Public domain W3C validator