Step | Hyp | Ref
| Expression |
1 | | imassrn 5969 |
. . . . . 6
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
2 | | dfdm4 5793 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
3 | | fof 6672 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
4 | 3 | fdmd 6595 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
5 | 2, 4 | eqtr3id 2793 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran ◡𝐹 = 𝐴) |
6 | 1, 5 | sseqtrid 3969 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
7 | 6 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
8 | | cnvexg 7745 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) |
9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ◡𝐹 ∈ V) |
10 | | imaexg 7736 |
. . . . 5
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑎) ∈ V) |
11 | | elpwg 4533 |
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ V → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
12 | 9, 10, 11 | 3syl 18 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
13 | 7, 12 | mpbird 256 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
14 | 13 | a1d 25 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (𝑎 ∈ 𝒫 𝐵 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴)) |
15 | | imaeq2 5954 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
17 | | simpllr 772 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝐹:𝐴–onto→𝐵) |
18 | | simplrl 773 |
. . . . . . . 8
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ∈ 𝒫 𝐵) |
19 | 18 | elpwid 4541 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ⊆ 𝐵) |
20 | | foimacnv 6717 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
21 | 17, 19, 20 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
22 | | simplrr 774 |
. . . . . . . 8
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ∈ 𝒫 𝐵) |
23 | 22 | elpwid 4541 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ⊆ 𝐵) |
24 | | foimacnv 6717 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑏 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
25 | 17, 23, 24 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
26 | 16, 21, 25 | 3eqtr3d 2786 |
. . . . 5
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 = 𝑏) |
27 | 26 | ex 412 |
. . . 4
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → 𝑎 = 𝑏)) |
28 | | imaeq2 5954 |
. . . 4
⊢ (𝑎 = 𝑏 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) |
29 | 27, 28 | impbid1 224 |
. . 3
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏)) |
30 | 29 | ex 412 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ((𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏))) |
31 | | rnexg 7725 |
. . . . 5
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) |
32 | | forn 6675 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
33 | 32 | eleq1d 2823 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
34 | 31, 33 | syl5ibcom 244 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
35 | 34 | imp 406 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
36 | 35 | pwexd 5297 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ∈ V) |
37 | | dmfex 7728 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
38 | 3, 37 | sylan2 592 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐴 ∈ V) |
39 | 38 | pwexd 5297 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐴 ∈ V) |
40 | 14, 30, 36, 39 | dom3d 8737 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) |