| Step | Hyp | Ref
| Expression |
| 1 | | imassrn 6058 |
. . . . . 6
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
| 2 | | dfdm4 5875 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
| 3 | | fof 6790 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 4 | 3 | fdmd 6716 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 5 | 2, 4 | eqtr3id 2784 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran ◡𝐹 = 𝐴) |
| 6 | 1, 5 | sseqtrid 4001 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
| 7 | 6 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
| 8 | | cnvexg 7920 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ◡𝐹 ∈ V) |
| 10 | | imaexg 7909 |
. . . . 5
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑎) ∈ V) |
| 11 | | elpwg 4578 |
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ V → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
| 12 | 9, 10, 11 | 3syl 18 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
| 13 | 7, 12 | mpbird 257 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
| 14 | 13 | a1d 25 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (𝑎 ∈ 𝒫 𝐵 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴)) |
| 15 | | imaeq2 6043 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
| 17 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝐹:𝐴–onto→𝐵) |
| 18 | | simplrl 776 |
. . . . . . . 8
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ∈ 𝒫 𝐵) |
| 19 | 18 | elpwid 4584 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ⊆ 𝐵) |
| 20 | | foimacnv 6835 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 21 | 17, 19, 20 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 22 | | simplrr 777 |
. . . . . . . 8
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ∈ 𝒫 𝐵) |
| 23 | 22 | elpwid 4584 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ⊆ 𝐵) |
| 24 | | foimacnv 6835 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑏 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
| 25 | 17, 23, 24 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
| 26 | 16, 21, 25 | 3eqtr3d 2778 |
. . . . 5
⊢ ((((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 = 𝑏) |
| 27 | 26 | ex 412 |
. . . 4
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → 𝑎 = 𝑏)) |
| 28 | | imaeq2 6043 |
. . . 4
⊢ (𝑎 = 𝑏 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) |
| 29 | 27, 28 | impbid1 225 |
. . 3
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏)) |
| 30 | 29 | ex 412 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ((𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏))) |
| 31 | | rnexg 7898 |
. . . . 5
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) |
| 32 | | forn 6793 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| 33 | 32 | eleq1d 2819 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
| 34 | 31, 33 | syl5ibcom 245 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| 35 | 34 | imp 406 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
| 36 | 35 | pwexd 5349 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ∈ V) |
| 37 | | dmfex 7901 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| 38 | 3, 37 | sylan2 593 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐴 ∈ V) |
| 39 | 38 | pwexd 5349 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐴 ∈ V) |
| 40 | 14, 30, 36, 39 | dom3d 9008 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) |