MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Visualization version   GIF version

Theorem fopwdom 9120
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
fopwdom ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6089 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 5906 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 6820 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
43fdmd 6746 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
52, 4eqtr3id 2791 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
61, 5sseqtrid 4026 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
76adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
8 cnvexg 7946 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
98adantr 480 . . . . 5 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
10 imaexg 7935 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
11 elpwg 4603 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
129, 10, 113syl 18 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
137, 12mpbird 257 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1413a1d 25 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
15 imaeq2 6074 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1615adantl 481 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
17 simpllr 776 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
18 simplrl 777 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
1918elpwid 4609 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
20 foimacnv 6865 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2117, 19, 20syl2anc 584 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
22 simplrr 778 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2322elpwid 4609 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
24 foimacnv 6865 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2517, 23, 24syl2anc 584 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2616, 21, 253eqtr3d 2785 . . . . 5 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2726ex 412 . . . 4 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
28 imaeq2 6074 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
2927, 28impbid1 225 . . 3 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3029ex 412 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
31 rnexg 7924 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
32 forn 6823 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3332eleq1d 2826 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3431, 33syl5ibcom 245 . . . 4 (𝐹𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3534imp 406 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
3635pwexd 5379 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
37 dmfex 7927 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐴 ∈ V)
383, 37sylan2 593 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
3938pwexd 5379 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4014, 30, 36, 39dom3d 9034 1 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  wf 6557  ontowfo 6559  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-fv 6569  df-dom 8987
This theorem is referenced by:  pwdom  9169  wdompwdom  9618
  Copyright terms: Public domain W3C validator