MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Visualization version   GIF version

Theorem fopwdom 9146
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
fopwdom ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6100 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 5920 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 6834 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
43fdmd 6757 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
52, 4eqtr3id 2794 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
61, 5sseqtrid 4061 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
76adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
8 cnvexg 7964 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
98adantr 480 . . . . 5 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
10 imaexg 7953 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
11 elpwg 4625 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
129, 10, 113syl 18 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
137, 12mpbird 257 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1413a1d 25 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
15 imaeq2 6085 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1615adantl 481 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
17 simpllr 775 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
18 simplrl 776 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
1918elpwid 4631 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
20 foimacnv 6879 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2117, 19, 20syl2anc 583 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
22 simplrr 777 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2322elpwid 4631 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
24 foimacnv 6879 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2517, 23, 24syl2anc 583 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2616, 21, 253eqtr3d 2788 . . . . 5 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2726ex 412 . . . 4 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
28 imaeq2 6085 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
2927, 28impbid1 225 . . 3 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3029ex 412 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
31 rnexg 7942 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
32 forn 6837 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3332eleq1d 2829 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3431, 33syl5ibcom 245 . . . 4 (𝐹𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3534imp 406 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
3635pwexd 5397 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
37 dmfex 7945 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐴 ∈ V)
383, 37sylan2 592 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
3938pwexd 5397 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4014, 30, 36, 39dom3d 9054 1 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622   class class class wbr 5166  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  ontowfo 6571  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-fv 6581  df-dom 9005
This theorem is referenced by:  pwdom  9195  wdompwdom  9647
  Copyright terms: Public domain W3C validator