MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Visualization version   GIF version

Theorem fopwdom 8627
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
fopwdom ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5942 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 5766 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 6592 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
43fdmd 6525 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
52, 4syl5eqr 2872 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
61, 5sseqtrid 4021 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
76adantl 484 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
8 cnvexg 7631 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
98adantr 483 . . . . 5 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
10 imaexg 7622 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
11 elpwg 4544 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
129, 10, 113syl 18 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
137, 12mpbird 259 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1413a1d 25 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
15 imaeq2 5927 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1615adantl 484 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
17 simpllr 774 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
18 simplrl 775 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
1918elpwid 4552 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
20 foimacnv 6634 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2117, 19, 20syl2anc 586 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
22 simplrr 776 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2322elpwid 4552 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
24 foimacnv 6634 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2517, 23, 24syl2anc 586 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2616, 21, 253eqtr3d 2866 . . . . 5 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2726ex 415 . . . 4 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
28 imaeq2 5927 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
2927, 28impbid1 227 . . 3 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3029ex 415 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
31 rnexg 7616 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
32 forn 6595 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3332eleq1d 2899 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3431, 33syl5ibcom 247 . . . 4 (𝐹𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3534imp 409 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
3635pwexd 5282 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
37 dmfex 7643 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐴 ∈ V)
383, 37sylan2 594 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
3938pwexd 5282 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4014, 30, 36, 39dom3d 8553 1 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  𝒫 cpw 4541   class class class wbr 5068  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  wf 6353  ontowfo 6355  cdom 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-fv 6365  df-dom 8513
This theorem is referenced by:  pwdom  8671  wdompwdom  9044
  Copyright terms: Public domain W3C validator