MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmexb Structured version   Visualization version   GIF version

Theorem fndmexb 7910
Description: The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.)
Assertion
Ref Expression
fndmexb (𝐹 Fn 𝐴 → (𝐴 ∈ V ↔ 𝐹 ∈ V))

Proof of Theorem fndmexb
StepHypRef Expression
1 fnex 7219 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐹 ∈ V)
21ex 412 . 2 (𝐹 Fn 𝐴 → (𝐴 ∈ V → 𝐹 ∈ V))
3 simpr 484 . . . 4 ((𝐹 Fn 𝐴𝐹 ∈ V) → 𝐹 ∈ V)
4 simpl 482 . . . 4 ((𝐹 Fn 𝐴𝐹 ∈ V) → 𝐹 Fn 𝐴)
53, 4fndmexd 7908 . . 3 ((𝐹 Fn 𝐴𝐹 ∈ V) → 𝐴 ∈ V)
65ex 412 . 2 (𝐹 Fn 𝐴 → (𝐹 ∈ V → 𝐴 ∈ V))
72, 6impbid 212 1 (𝐹 Fn 𝐴 → (𝐴 ∈ V ↔ 𝐹 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  Vcvv 3463   Fn wfn 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by:  fdmexb  7911
  Copyright terms: Public domain W3C validator