![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsupdm2 | Structured version Visualization version GIF version |
Description: The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
fsupdm2.1 | β’ β²ππ |
fsupdm2.2 | β’ β²π₯π |
fsupdm2.3 | β’ β²ππ |
fsupdm2.4 | β’ β²π₯πΉ |
fsupdm2.5 | β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ*) |
fsupdm2.6 | β’ π· = {π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π ((πΉβπ)βπ₯) β€ π¦} |
fsupdm2.7 | β’ πΊ = (π₯ β π· β¦ sup(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < )) |
fsupdm2.8 | β’ π» = (π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ ((πΉβπ)βπ₯) < π})) |
Ref | Expression |
---|---|
fsupdm2 | β’ (π β dom πΊ = βͺ π β β β© π β π ((π»βπ)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsupdm2.2 | . . 3 β’ β²π₯π | |
2 | fsupdm2.6 | . . . 4 β’ π· = {π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π ((πΉβπ)βπ₯) β€ π¦} | |
3 | nfrab1 3452 | . . . 4 β’ β²π₯{π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π ((πΉβπ)βπ₯) β€ π¦} | |
4 | 2, 3 | nfcxfr 2902 | . . 3 β’ β²π₯π· |
5 | fsupdm2.7 | . . 3 β’ πΊ = (π₯ β π· β¦ sup(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < )) | |
6 | ltso 11294 | . . . . 5 β’ < Or β | |
7 | 6 | supex 9458 | . . . 4 β’ sup(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < ) β V |
8 | 7 | a1i 11 | . . 3 β’ ((π β§ π₯ β π·) β sup(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < ) β V) |
9 | 1, 4, 5, 8 | dmmptdff 43922 | . 2 β’ (π β dom πΊ = π·) |
10 | fsupdm2.1 | . . 3 β’ β²ππ | |
11 | fsupdm2.3 | . . 3 β’ β²ππ | |
12 | fsupdm2.4 | . . 3 β’ β²π₯πΉ | |
13 | fsupdm2.5 | . . 3 β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ*) | |
14 | fsupdm2.8 | . . 3 β’ π» = (π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ ((πΉβπ)βπ₯) < π})) | |
15 | 10, 1, 11, 12, 13, 2, 14 | fsupdm 45558 | . 2 β’ (π β π· = βͺ π β β β© π β π ((π»βπ)βπ)) |
16 | 9, 15 | eqtrd 2773 | 1 β’ (π β dom πΊ = βͺ π β β β© π β π ((π»βπ)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β²wnf 1786 β wcel 2107 β²wnfc 2884 βwral 3062 βwrex 3071 {crab 3433 Vcvv 3475 βͺ ciun 4998 β© ciin 4999 class class class wbr 5149 β¦ cmpt 5232 dom cdm 5677 ran crn 5678 βΆwf 6540 βcfv 6544 supcsup 9435 βcr 11109 β*cxr 11247 < clt 11248 β€ cle 11249 βcn 12212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 |
This theorem is referenced by: smfsupdmmbllem 45560 |
Copyright terms: Public domain | W3C validator |