Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupdm2 Structured version   Visualization version   GIF version

Theorem fsupdm2 44978
Description: The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fsupdm2.1 𝑛𝜑
fsupdm2.2 𝑥𝜑
fsupdm2.3 𝑚𝜑
fsupdm2.4 𝑥𝐹
fsupdm2.5 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
fsupdm2.6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
fsupdm2.7 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
fsupdm2.8 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
Assertion
Ref Expression
fsupdm2 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)

Proof of Theorem fsupdm2
StepHypRef Expression
1 fsupdm2.2 . . 3 𝑥𝜑
2 fsupdm2.6 . . . 4 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
3 nfrab1 3424 . . . 4 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
42, 3nfcxfr 2903 . . 3 𝑥𝐷
5 fsupdm2.7 . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6 ltso 11193 . . . . 5 < Or ℝ
76supex 9357 . . . 4 sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V
87a1i 11 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V)
91, 4, 5, 8dmmptdff 43342 . 2 (𝜑 → dom 𝐺 = 𝐷)
10 fsupdm2.1 . . 3 𝑛𝜑
11 fsupdm2.3 . . 3 𝑚𝜑
12 fsupdm2.4 . . 3 𝑥𝐹
13 fsupdm2.5 . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
14 fsupdm2.8 . . 3 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
1510, 1, 11, 12, 13, 2, 14fsupdm 44977 . 2 (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
169, 15eqtrd 2777 1 (𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2885  wral 3062  wrex 3071  {crab 3405  Vcvv 3443   ciun 4952   ciin 4953   class class class wbr 5103  cmpt 5186  dom cdm 5631  ran crn 5632  wf 6489  cfv 6493  supcsup 9334  cr 11008  *cxr 11146   < clt 11147  cle 11148  cn 12111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-sup 9336  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112
This theorem is referenced by:  smfsupdmmbllem  44979
  Copyright terms: Public domain W3C validator