Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptdf Structured version   Visualization version   GIF version

Theorem dmmptdf 42652
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
dmmptdf.x 𝑥𝜑
dmmptdf.a 𝐴 = (𝑥𝐵𝐶)
dmmptdf.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmptdf (𝜑 → dom 𝐴 = 𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptdf
StepHypRef Expression
1 dmmptdf.a . . 3 𝐴 = (𝑥𝐵𝐶)
21dmmpt 6132 . 2 dom 𝐴 = {𝑥𝐵𝐶 ∈ V}
3 dmmptdf.x . . . 4 𝑥𝜑
4 dmmptdf.c . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝑉)
54elexd 3442 . . . 4 ((𝜑𝑥𝐵) → 𝐶 ∈ V)
63, 5ralrimia 3420 . . 3 (𝜑 → ∀𝑥𝐵 𝐶 ∈ V)
7 rabid2 3307 . . 3 (𝐵 = {𝑥𝐵𝐶 ∈ V} ↔ ∀𝑥𝐵 𝐶 ∈ V)
86, 7sylibr 233 . 2 (𝜑𝐵 = {𝑥𝐵𝐶 ∈ V})
92, 8eqtr4id 2798 1 (𝜑 → dom 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cmpt 5153  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  smfpimltmpt  44169  smfpimltxrmpt  44181  smfadd  44187  smfpimgtmpt  44203  smfpimgtxrmpt  44206  smfpimioompt  44207  smfrec  44210  smfmul  44216  smfmulc1  44217  smffmpt  44225  smfsupmpt  44235  smfinfmpt  44239  smflimsupmpt  44249  smfliminfmpt  44252
  Copyright terms: Public domain W3C validator