| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdf | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmmptdf.x | ⊢ Ⅎ𝑥𝜑 |
| dmmptdf.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| dmmptdf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmmptdf | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptdf.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | dmmptdf.a | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 4 | dmmptdf.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | dmmptdff 45190 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: smfpimltmpt 46717 smfadd 46736 smfpimgtmpt 46752 smfpimioompt 46757 smfrec 46760 smfmul 46766 smfmulc1 46767 smfsupmpt 46786 smfinfmpt 46790 smflimsupmpt 46800 smfliminfmpt 46803 |
| Copyright terms: Public domain | W3C validator |