![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdf | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmmptdf.x | ⊢ Ⅎ𝑥𝜑 |
dmmptdf.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptdf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptdf | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdf.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | dmmptdf.a | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
4 | dmmptdf.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | dmmptdff 44732 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ↦ cmpt 5232 dom cdm 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 |
This theorem is referenced by: smfpimltmpt 46269 smfadd 46288 smfpimgtmpt 46304 smfpimioompt 46309 smfrec 46312 smfmul 46318 smfmulc1 46319 smfsupmpt 46338 smfinfmpt 46342 smflimsupmpt 46352 smfliminfmpt 46355 |
Copyright terms: Public domain | W3C validator |