| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdf | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmmptdf.x | ⊢ Ⅎ𝑥𝜑 |
| dmmptdf.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| dmmptdf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmmptdf | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptdf.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | dmmptdf.a | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 4 | dmmptdf.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | dmmptdff 45195 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ↦ cmpt 5201 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: smfpimltmpt 46723 smfadd 46742 smfpimgtmpt 46758 smfpimioompt 46763 smfrec 46766 smfmul 46772 smfmulc1 46773 smfsupmpt 46792 smfinfmpt 46796 smflimsupmpt 46806 smfliminfmpt 46809 |
| Copyright terms: Public domain | W3C validator |