Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptdf Structured version   Visualization version   GIF version

Theorem dmmptdf 45202
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
dmmptdf.x 𝑥𝜑
dmmptdf.a 𝐴 = (𝑥𝐵𝐶)
dmmptdf.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmptdf (𝜑 → dom 𝐴 = 𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptdf
StepHypRef Expression
1 dmmptdf.x . 2 𝑥𝜑
2 nfcv 2891 . 2 𝑥𝐵
3 dmmptdf.a . 2 𝐴 = (𝑥𝐵𝐶)
4 dmmptdf.c . 2 ((𝜑𝑥𝐵) → 𝐶𝑉)
51, 2, 3, 4dmmptdff 45201 1 (𝜑 → dom 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  cmpt 5173  dom cdm 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  smfpimltmpt  46727  smfadd  46746  smfpimgtmpt  46762  smfpimioompt  46767  smfrec  46770  smfmul  46776  smfmulc1  46777  smfsupmpt  46796  smfinfmpt  46800  smflimsupmpt  46810  smfliminfmpt  46813
  Copyright terms: Public domain W3C validator