![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdf | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmmptdf.x | ⊢ Ⅎ𝑥𝜑 |
dmmptdf.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptdf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptdf | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdf.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | dmmptdf.a | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
4 | dmmptdf.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | dmmptdff 45130 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ↦ cmpt 5249 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: smfpimltmpt 46667 smfadd 46686 smfpimgtmpt 46702 smfpimioompt 46707 smfrec 46710 smfmul 46716 smfmulc1 46717 smfsupmpt 46736 smfinfmpt 46740 smflimsupmpt 46750 smfliminfmpt 46753 |
Copyright terms: Public domain | W3C validator |