Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl Structured version   Visualization version   GIF version

Theorem muldmmbl 46881
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl.1 𝑥𝜑
muldmmbl.2 𝑥𝐴
muldmmbl.3 𝑥𝐵
muldmmbl.4 (𝜑𝑆 ∈ SAlg)
muldmmbl.5 (𝜑𝐴𝑆)
muldmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
muldmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)

Proof of Theorem muldmmbl
StepHypRef Expression
1 muldmmbl.1 . . 3 𝑥𝜑
2 muldmmbl.2 . . . 4 𝑥𝐴
3 muldmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4171 . . 3 𝑥(𝐴𝐵)
5 eqid 2731 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷))
6 ovexd 7381 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 · 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 45268 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝐴𝐵))
8 muldmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 muldmmbl.5 . . 3 (𝜑𝐴𝑆)
10 muldmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 46398 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2831 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2111  wnfc 2879  Vcvv 3436  cin 3896  cmpt 5170  dom cdm 5614  (class class class)co 7346   · cmul 11011  SAlgcsalg 46354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-salg 46355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator