Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl Structured version   Visualization version   GIF version

Theorem muldmmbl 46850
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl.1 𝑥𝜑
muldmmbl.2 𝑥𝐴
muldmmbl.3 𝑥𝐵
muldmmbl.4 (𝜑𝑆 ∈ SAlg)
muldmmbl.5 (𝜑𝐴𝑆)
muldmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
muldmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)

Proof of Theorem muldmmbl
StepHypRef Expression
1 muldmmbl.1 . . 3 𝑥𝜑
2 muldmmbl.2 . . . 4 𝑥𝐴
3 muldmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4224 . . 3 𝑥(𝐴𝐵)
5 eqid 2737 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷))
6 ovexd 7466 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 · 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 45228 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝐴𝐵))
8 muldmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 muldmmbl.5 . . 3 (𝜑𝐴𝑆)
10 muldmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 46367 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2841 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2108  wnfc 2890  Vcvv 3480  cin 3950  cmpt 5225  dom cdm 5685  (class class class)co 7431   · cmul 11160  SAlgcsalg 46323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-salg 46324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator