| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| muldmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
| muldmmbl.2 | ⊢ Ⅎ𝑥𝐴 |
| muldmmbl.3 | ⊢ Ⅎ𝑥𝐵 |
| muldmmbl.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| muldmmbl.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| muldmmbl.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| muldmmbl | ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | muldmmbl.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | muldmmbl.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfin 4224 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| 5 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) | |
| 6 | ovexd 7466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐶 · 𝐷) ∈ V) | |
| 7 | 1, 4, 5, 6 | dmmptdff 45228 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝐴 ∩ 𝐵)) |
| 8 | muldmmbl.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 9 | muldmmbl.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 10 | muldmmbl.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 11 | 8, 9, 10 | salincld 46367 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| 12 | 7, 11 | eqeltrd 2841 | 1 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2890 Vcvv 3480 ∩ cin 3950 ↦ cmpt 5225 dom cdm 5685 (class class class)co 7431 · cmul 11160 SAlgcsalg 46323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-salg 46324 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |