Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl Structured version   Visualization version   GIF version

Theorem muldmmbl 46456
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl.1 𝑥𝜑
muldmmbl.2 𝑥𝐴
muldmmbl.3 𝑥𝐵
muldmmbl.4 (𝜑𝑆 ∈ SAlg)
muldmmbl.5 (𝜑𝐴𝑆)
muldmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
muldmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)

Proof of Theorem muldmmbl
StepHypRef Expression
1 muldmmbl.1 . . 3 𝑥𝜑
2 muldmmbl.2 . . . 4 𝑥𝐴
3 muldmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4217 . . 3 𝑥(𝐴𝐵)
5 eqid 2726 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷))
6 ovexd 7459 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 · 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 44830 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝐴𝐵))
8 muldmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 muldmmbl.5 . . 3 (𝜑𝐴𝑆)
10 muldmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 45973 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2826 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wnf 1778  wcel 2099  wnfc 2876  Vcvv 3462  cin 3946  cmpt 5236  dom cdm 5682  (class class class)co 7424   · cmul 11163  SAlgcsalg 45929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-salg 45930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator