| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| muldmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
| muldmmbl.2 | ⊢ Ⅎ𝑥𝐴 |
| muldmmbl.3 | ⊢ Ⅎ𝑥𝐵 |
| muldmmbl.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| muldmmbl.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| muldmmbl.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| muldmmbl | ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | muldmmbl.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | muldmmbl.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfin 4199 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| 5 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) | |
| 6 | ovexd 7438 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐶 · 𝐷) ∈ V) | |
| 7 | 1, 4, 5, 6 | dmmptdff 45195 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝐴 ∩ 𝐵)) |
| 8 | muldmmbl.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 9 | muldmmbl.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 10 | muldmmbl.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 11 | 8, 9, 10 | salincld 46329 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| 12 | 7, 11 | eqeltrd 2834 | 1 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 ∩ cin 3925 ↦ cmpt 5201 dom cdm 5654 (class class class)co 7403 · cmul 11132 SAlgcsalg 46285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-salg 46286 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |