| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| muldmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
| muldmmbl.2 | ⊢ Ⅎ𝑥𝐴 |
| muldmmbl.3 | ⊢ Ⅎ𝑥𝐵 |
| muldmmbl.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| muldmmbl.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| muldmmbl.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| muldmmbl | ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | muldmmbl.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | muldmmbl.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfin 4190 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| 5 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) | |
| 6 | ovexd 7425 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐶 · 𝐷) ∈ V) | |
| 7 | 1, 4, 5, 6 | dmmptdff 45224 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) = (𝐴 ∩ 𝐵)) |
| 8 | muldmmbl.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 9 | muldmmbl.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 10 | muldmmbl.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 11 | 8, 9, 10 | salincld 46357 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| 12 | 7, 11 | eqeltrd 2829 | 1 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ∩ cin 3916 ↦ cmpt 5191 dom cdm 5641 (class class class)co 7390 · cmul 11080 SAlgcsalg 46313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-salg 46314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |