Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl Structured version   Visualization version   GIF version

Theorem muldmmbl 44629
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl.1 𝑥𝜑
muldmmbl.2 𝑥𝐴
muldmmbl.3 𝑥𝐵
muldmmbl.4 (𝜑𝑆 ∈ SAlg)
muldmmbl.5 (𝜑𝐴𝑆)
muldmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
muldmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)

Proof of Theorem muldmmbl
StepHypRef Expression
1 muldmmbl.1 . . 3 𝑥𝜑
2 muldmmbl.2 . . . 4 𝑥𝐴
3 muldmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4160 . . 3 𝑥(𝐴𝐵)
5 eqid 2736 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷))
6 ovexd 7351 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 · 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 43009 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) = (𝐴𝐵))
8 muldmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 muldmmbl.5 . . 3 (𝜑𝐴𝑆)
10 muldmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 44146 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2837 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1784  wcel 2105  wnfc 2884  Vcvv 3440  cin 3895  cmpt 5169  dom cdm 5607  (class class class)co 7316   · cmul 10955  SAlgcsalg 44104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-salg 44105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator