Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl Structured version   Visualization version   GIF version

Theorem adddmmbl 46788
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl.1 𝑥𝜑
adddmmbl.2 𝑥𝐴
adddmmbl.3 𝑥𝐵
adddmmbl.4 (𝜑𝑆 ∈ SAlg)
adddmmbl.5 (𝜑𝐴𝑆)
adddmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
adddmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)

Proof of Theorem adddmmbl
StepHypRef Expression
1 adddmmbl.1 . . 3 𝑥𝜑
2 adddmmbl.2 . . . 4 𝑥𝐴
3 adddmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4231 . . 3 𝑥(𝐴𝐵)
5 eqid 2734 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷))
6 ovexd 7465 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 + 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 45165 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝐴𝐵))
8 adddmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 adddmmbl.5 . . 3 (𝜑𝐴𝑆)
10 adddmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 46307 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2838 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1779  wcel 2105  wnfc 2887  Vcvv 3477  cin 3961  cmpt 5230  dom cdm 5688  (class class class)co 7430   + caddc 11155  SAlgcsalg 46263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-salg 46264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator