![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
adddmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
adddmmbl.2 | ⊢ Ⅎ𝑥𝐴 |
adddmmbl.3 | ⊢ Ⅎ𝑥𝐵 |
adddmmbl.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
adddmmbl.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
adddmmbl.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
adddmmbl | ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | adddmmbl.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | adddmmbl.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfin 4231 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
5 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) | |
6 | ovexd 7465 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐶 + 𝐷) ∈ V) | |
7 | 1, 4, 5, 6 | dmmptdff 45165 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) = (𝐴 ∩ 𝐵)) |
8 | adddmmbl.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
9 | adddmmbl.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
10 | adddmmbl.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
11 | 8, 9, 10 | salincld 46307 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
12 | 7, 11 | eqeltrd 2838 | 1 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1779 ∈ wcel 2105 Ⅎwnfc 2887 Vcvv 3477 ∩ cin 3961 ↦ cmpt 5230 dom cdm 5688 (class class class)co 7430 + caddc 11155 SAlgcsalg 46263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-salg 46264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |