Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl Structured version   Visualization version   GIF version

Theorem adddmmbl 46754
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl.1 𝑥𝜑
adddmmbl.2 𝑥𝐴
adddmmbl.3 𝑥𝐵
adddmmbl.4 (𝜑𝑆 ∈ SAlg)
adddmmbl.5 (𝜑𝐴𝑆)
adddmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
adddmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)

Proof of Theorem adddmmbl
StepHypRef Expression
1 adddmmbl.1 . . 3 𝑥𝜑
2 adddmmbl.2 . . . 4 𝑥𝐴
3 adddmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4245 . . 3 𝑥(𝐴𝐵)
5 eqid 2740 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷))
6 ovexd 7483 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 + 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 45130 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝐴𝐵))
8 adddmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 adddmmbl.5 . . 3 (𝜑𝐴𝑆)
10 adddmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 46273 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2844 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1781  wcel 2108  wnfc 2893  Vcvv 3488  cin 3975  cmpt 5249  dom cdm 5700  (class class class)co 7448   + caddc 11187  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-salg 46230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator