![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
adddmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
adddmmbl.2 | ⊢ Ⅎ𝑥𝐴 |
adddmmbl.3 | ⊢ Ⅎ𝑥𝐵 |
adddmmbl.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
adddmmbl.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
adddmmbl.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
adddmmbl | ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | adddmmbl.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | adddmmbl.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfin 4245 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
5 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) | |
6 | ovexd 7483 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐶 + 𝐷) ∈ V) | |
7 | 1, 4, 5, 6 | dmmptdff 45130 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) = (𝐴 ∩ 𝐵)) |
8 | adddmmbl.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
9 | adddmmbl.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
10 | adddmmbl.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
11 | 8, 9, 10 | salincld 46273 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑆) |
12 | 7, 11 | eqeltrd 2844 | 1 ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 Vcvv 3488 ∩ cin 3975 ↦ cmpt 5249 dom cdm 5700 (class class class)co 7448 + caddc 11187 SAlgcsalg 46229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-salg 46230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |