Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl Structured version   Visualization version   GIF version

Theorem adddmmbl 46838
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl.1 𝑥𝜑
adddmmbl.2 𝑥𝐴
adddmmbl.3 𝑥𝐵
adddmmbl.4 (𝜑𝑆 ∈ SAlg)
adddmmbl.5 (𝜑𝐴𝑆)
adddmmbl.6 (𝜑𝐵𝑆)
Assertion
Ref Expression
adddmmbl (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)

Proof of Theorem adddmmbl
StepHypRef Expression
1 adddmmbl.1 . . 3 𝑥𝜑
2 adddmmbl.2 . . . 4 𝑥𝐴
3 adddmmbl.3 . . . 4 𝑥𝐵
42, 3nfin 4190 . . 3 𝑥(𝐴𝐵)
5 eqid 2730 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷))
6 ovexd 7425 . . 3 ((𝜑𝑥 ∈ (𝐴𝐵)) → (𝐶 + 𝐷) ∈ V)
71, 4, 5, 6dmmptdff 45224 . 2 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) = (𝐴𝐵))
8 adddmmbl.4 . . 3 (𝜑𝑆 ∈ SAlg)
9 adddmmbl.5 . . 3 (𝜑𝐴𝑆)
10 adddmmbl.6 . . 3 (𝜑𝐵𝑆)
118, 9, 10salincld 46357 . 2 (𝜑 → (𝐴𝐵) ∈ 𝑆)
127, 11eqeltrd 2829 1 (𝜑 → dom (𝑥 ∈ (𝐴𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wnfc 2877  Vcvv 3450  cin 3916  cmpt 5191  dom cdm 5641  (class class class)co 7390   + caddc 11078  SAlgcsalg 46313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-salg 46314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator