Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finfdm2 Structured version   Visualization version   GIF version

Theorem finfdm2 45862
Description: The domain of the inf function is defined in Proposition 121F (c) of [Fremlin1], p. 39. See smfinf 45833. Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025.)
Hypotheses
Ref Expression
finfdm2.1 β„²π‘›πœ‘
finfdm2.2 β„²π‘₯πœ‘
finfdm2.3 β„²π‘šπœ‘
finfdm2.4 β„²π‘₯𝐹
finfdm2.5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (πΉβ€˜π‘›):dom (πΉβ€˜π‘›)βŸΆβ„*)
finfdm2.6 𝐷 = {π‘₯ ∈ ∩ 𝑛 ∈ 𝑍 dom (πΉβ€˜π‘›) ∣ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ 𝑍 𝑦 ≀ ((πΉβ€˜π‘›)β€˜π‘₯)}
finfdm2.7 𝐺 = (π‘₯ ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
finfdm2.8 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘š ∈ β„• ↦ {π‘₯ ∈ dom (πΉβ€˜π‘›) ∣ -π‘š < ((πΉβ€˜π‘›)β€˜π‘₯)}))
Assertion
Ref Expression
finfdm2 (πœ‘ β†’ dom 𝐺 = βˆͺ π‘š ∈ β„• ∩ 𝑛 ∈ 𝑍 ((π»β€˜π‘›)β€˜π‘š))
Distinct variable groups:   𝐷,π‘š   π‘š,𝐹,𝑦   𝑦,𝐻   π‘š,𝑍,𝑛,π‘₯,𝑦   πœ‘,𝑦
Allowed substitution hints:   πœ‘(π‘₯,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑛)   𝐹(π‘₯,𝑛)   𝐺(π‘₯,𝑦,π‘š,𝑛)   𝐻(π‘₯,π‘š,𝑛)

Proof of Theorem finfdm2
StepHypRef Expression
1 finfdm2.2 . . 3 β„²π‘₯πœ‘
2 finfdm2.6 . . . 4 𝐷 = {π‘₯ ∈ ∩ 𝑛 ∈ 𝑍 dom (πΉβ€˜π‘›) ∣ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ 𝑍 𝑦 ≀ ((πΉβ€˜π‘›)β€˜π‘₯)}
3 nfrab1 3451 . . . 4 β„²π‘₯{π‘₯ ∈ ∩ 𝑛 ∈ 𝑍 dom (πΉβ€˜π‘›) ∣ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ 𝑍 𝑦 ≀ ((πΉβ€˜π‘›)β€˜π‘₯)}
42, 3nfcxfr 2901 . . 3 β„²π‘₯𝐷
5 finfdm2.7 . . 3 𝐺 = (π‘₯ ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
6 ltso 11298 . . . . 5 < Or ℝ
76infex 9490 . . . 4 inf(ran (𝑛 ∈ 𝑍 ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ V
87a1i 11 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ inf(ran (𝑛 ∈ 𝑍 ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ V)
91, 4, 5, 8dmmptdff 44221 . 2 (πœ‘ β†’ dom 𝐺 = 𝐷)
10 finfdm2.1 . . 3 β„²π‘›πœ‘
11 finfdm2.3 . . 3 β„²π‘šπœ‘
12 finfdm2.4 . . 3 β„²π‘₯𝐹
13 finfdm2.5 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (πΉβ€˜π‘›):dom (πΉβ€˜π‘›)βŸΆβ„*)
14 finfdm2.8 . . 3 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘š ∈ β„• ↦ {π‘₯ ∈ dom (πΉβ€˜π‘›) ∣ -π‘š < ((πΉβ€˜π‘›)β€˜π‘₯)}))
1510, 1, 11, 12, 13, 2, 14finfdm 45861 . 2 (πœ‘ β†’ 𝐷 = βˆͺ π‘š ∈ β„• ∩ 𝑛 ∈ 𝑍 ((π»β€˜π‘›)β€˜π‘š))
169, 15eqtrd 2772 1 (πœ‘ β†’ dom 𝐺 = βˆͺ π‘š ∈ β„• ∩ 𝑛 ∈ 𝑍 ((π»β€˜π‘›)β€˜π‘š))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  β„²wnf 1785   ∈ wcel 2106  β„²wnfc 2883  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474  βˆͺ ciun 4997  βˆ© ciin 4998   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  infcinf 9438  β„cr 11111  β„*cxr 11251   < clt 11252   ≀ cle 11253  -cneg 11449  β„•cn 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217
This theorem is referenced by:  smfinfdmmbllem  45863
  Copyright terms: Public domain W3C validator