![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finfdm2 | Structured version Visualization version GIF version |
Description: The domain of the inf function is defined in Proposition 121F (c) of [Fremlin1], p. 39. See smfinf 45833. Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
Ref | Expression |
---|---|
finfdm2.1 | β’ β²ππ |
finfdm2.2 | β’ β²π₯π |
finfdm2.3 | β’ β²ππ |
finfdm2.4 | β’ β²π₯πΉ |
finfdm2.5 | β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ*) |
finfdm2.6 | β’ π· = {π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} |
finfdm2.7 | β’ πΊ = (π₯ β π· β¦ inf(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < )) |
finfdm2.8 | β’ π» = (π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) |
Ref | Expression |
---|---|
finfdm2 | β’ (π β dom πΊ = βͺ π β β β© π β π ((π»βπ)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finfdm2.2 | . . 3 β’ β²π₯π | |
2 | finfdm2.6 | . . . 4 β’ π· = {π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} | |
3 | nfrab1 3451 | . . . 4 β’ β²π₯{π₯ β β© π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} | |
4 | 2, 3 | nfcxfr 2901 | . . 3 β’ β²π₯π· |
5 | finfdm2.7 | . . 3 β’ πΊ = (π₯ β π· β¦ inf(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < )) | |
6 | ltso 11298 | . . . . 5 β’ < Or β | |
7 | 6 | infex 9490 | . . . 4 β’ inf(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < ) β V |
8 | 7 | a1i 11 | . . 3 β’ ((π β§ π₯ β π·) β inf(ran (π β π β¦ ((πΉβπ)βπ₯)), β, < ) β V) |
9 | 1, 4, 5, 8 | dmmptdff 44221 | . 2 β’ (π β dom πΊ = π·) |
10 | finfdm2.1 | . . 3 β’ β²ππ | |
11 | finfdm2.3 | . . 3 β’ β²ππ | |
12 | finfdm2.4 | . . 3 β’ β²π₯πΉ | |
13 | finfdm2.5 | . . 3 β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ*) | |
14 | finfdm2.8 | . . 3 β’ π» = (π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) | |
15 | 10, 1, 11, 12, 13, 2, 14 | finfdm 45861 | . 2 β’ (π β π· = βͺ π β β β© π β π ((π»βπ)βπ)) |
16 | 9, 15 | eqtrd 2772 | 1 β’ (π β dom πΊ = βͺ π β β β© π β π ((π»βπ)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 β²wnfc 2883 βwral 3061 βwrex 3070 {crab 3432 Vcvv 3474 βͺ ciun 4997 β© ciin 4998 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 ran crn 5677 βΆwf 6539 βcfv 6543 infcinf 9438 βcr 11111 β*cxr 11251 < clt 11252 β€ cle 11253 -cneg 11449 βcn 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 |
This theorem is referenced by: smfinfdmmbllem 45863 |
Copyright terms: Public domain | W3C validator |