MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   GIF version

Theorem dvdsnprmd 16634
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (๐œ‘ โ†’ 1 < ๐ด)
dvdsnprmd.l (๐œ‘ โ†’ ๐ด < ๐‘)
dvdsnprmd.d (๐œ‘ โ†’ ๐ด โˆฅ ๐‘)
Assertion
Ref Expression
dvdsnprmd (๐œ‘ โ†’ ยฌ ๐‘ โˆˆ โ„™)

Proof of Theorem dvdsnprmd
Dummy variable ๐‘˜ is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (๐œ‘ โ†’ ๐ด โˆฅ ๐‘)
2 dvdszrcl 16209 . . . 4 (๐ด โˆฅ ๐‘ โ†’ (๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค))
3 divides 16206 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด โˆฅ ๐‘ โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐ด) = ๐‘))
41, 2, 33syl 18 . . 3 (๐œ‘ โ†’ (๐ด โˆฅ ๐‘ โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐ด) = ๐‘))
5 2z 12598 . . . . . . . 8 2 โˆˆ โ„ค
65a1i 11 . . . . . . 7 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ 2 โˆˆ โ„ค)
7 simplr 766 . . . . . . 7 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ๐‘˜ โˆˆ โ„ค)
8 dvdsnprmd.l . . . . . . . . . . . 12 (๐œ‘ โ†’ ๐ด < ๐‘)
98adantr 480 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐ด < ๐‘)
109adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ๐ด < ๐‘)
11 breq2 5145 . . . . . . . . . . 11 ((๐‘˜ ยท ๐ด) = ๐‘ โ†’ (๐ด < (๐‘˜ ยท ๐ด) โ†” ๐ด < ๐‘))
1211adantl 481 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ (๐ด < (๐‘˜ ยท ๐ด) โ†” ๐ด < ๐‘))
1310, 12mpbird 257 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ๐ด < (๐‘˜ ยท ๐ด))
14 dvdsnprmd.g . . . . . . . . . . . . 13 (๐œ‘ โ†’ 1 < ๐ด)
15 zre 12566 . . . . . . . . . . . . . . . . . 18 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„)
16153ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐ด โˆˆ โ„)
17 zre 12566 . . . . . . . . . . . . . . . . . 18 (๐‘˜ โˆˆ โ„ค โ†’ ๐‘˜ โˆˆ โ„)
18173ad2ant3 1132 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘˜ โˆˆ โ„)
19 0lt1 11740 . . . . . . . . . . . . . . . . . . . 20 0 < 1
20 0red 11221 . . . . . . . . . . . . . . . . . . . . 21 (๐ด โˆˆ โ„ค โ†’ 0 โˆˆ โ„)
21 1red 11219 . . . . . . . . . . . . . . . . . . . . 21 (๐ด โˆˆ โ„ค โ†’ 1 โˆˆ โ„)
22 lttr 11294 . . . . . . . . . . . . . . . . . . . . 21 ((0 โˆˆ โ„ โˆง 1 โˆˆ โ„ โˆง ๐ด โˆˆ โ„) โ†’ ((0 < 1 โˆง 1 < ๐ด) โ†’ 0 < ๐ด))
2320, 21, 15, 22syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (๐ด โˆˆ โ„ค โ†’ ((0 < 1 โˆง 1 < ๐ด) โ†’ 0 < ๐ด))
2419, 23mpani 693 . . . . . . . . . . . . . . . . . . 19 (๐ด โˆˆ โ„ค โ†’ (1 < ๐ด โ†’ 0 < ๐ด))
2524imp 406 . . . . . . . . . . . . . . . . . 18 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ 0 < ๐ด)
26253adant3 1129 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด โˆง ๐‘˜ โˆˆ โ„ค) โ†’ 0 < ๐ด)
2716, 18, 263jca 1125 . . . . . . . . . . . . . . . 16 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))
28273exp 1116 . . . . . . . . . . . . . . 15 (๐ด โˆˆ โ„ค โ†’ (1 < ๐ด โ†’ (๐‘˜ โˆˆ โ„ค โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))))
2928adantr 480 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (1 < ๐ด โ†’ (๐‘˜ โˆˆ โ„ค โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))))
301, 2, 293syl 18 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (1 < ๐ด โ†’ (๐‘˜ โˆˆ โ„ค โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))))
3114, 30mpd 15 . . . . . . . . . . . 12 (๐œ‘ โ†’ (๐‘˜ โˆˆ โ„ค โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด)))
3231imp 406 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))
3332adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ (๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด))
34 ltmulgt12 12079 . . . . . . . . . 10 ((๐ด โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง 0 < ๐ด) โ†’ (1 < ๐‘˜ โ†” ๐ด < (๐‘˜ ยท ๐ด)))
3533, 34syl 17 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ (1 < ๐‘˜ โ†” ๐ด < (๐‘˜ ยท ๐ด)))
3613, 35mpbird 257 . . . . . . . 8 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ 1 < ๐‘˜)
37 df-2 12279 . . . . . . . . . 10 2 = (1 + 1)
3837breq1i 5148 . . . . . . . . 9 (2 โ‰ค ๐‘˜ โ†” (1 + 1) โ‰ค ๐‘˜)
39 1zzd 12597 . . . . . . . . . . . . 13 (๐‘˜ โˆˆ โ„ค โ†’ 1 โˆˆ โ„ค)
40 zltp1le 12616 . . . . . . . . . . . . 13 ((1 โˆˆ โ„ค โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (1 < ๐‘˜ โ†” (1 + 1) โ‰ค ๐‘˜))
4139, 40mpancom 685 . . . . . . . . . . . 12 (๐‘˜ โˆˆ โ„ค โ†’ (1 < ๐‘˜ โ†” (1 + 1) โ‰ค ๐‘˜))
4241bicomd 222 . . . . . . . . . . 11 (๐‘˜ โˆˆ โ„ค โ†’ ((1 + 1) โ‰ค ๐‘˜ โ†” 1 < ๐‘˜))
4342adantl 481 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ((1 + 1) โ‰ค ๐‘˜ โ†” 1 < ๐‘˜))
4443adantr 480 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ((1 + 1) โ‰ค ๐‘˜ โ†” 1 < ๐‘˜))
4538, 44bitrid 283 . . . . . . . 8 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ (2 โ‰ค ๐‘˜ โ†” 1 < ๐‘˜))
4636, 45mpbird 257 . . . . . . 7 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ 2 โ‰ค ๐‘˜)
47 eluz2 12832 . . . . . . 7 (๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (2 โˆˆ โ„ค โˆง ๐‘˜ โˆˆ โ„ค โˆง 2 โ‰ค ๐‘˜))
486, 7, 46, 47syl3anbrc 1340 . . . . . 6 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜2))
495a1i 11 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ 2 โˆˆ โ„ค)
50 simpl 482 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ ๐ด โˆˆ โ„ค)
51 1zzd 12597 . . . . . . . . . . . . . . . . 17 (๐ด โˆˆ โ„ค โ†’ 1 โˆˆ โ„ค)
52 zltp1le 12616 . . . . . . . . . . . . . . . . 17 ((1 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ (1 < ๐ด โ†” (1 + 1) โ‰ค ๐ด))
5351, 52mpancom 685 . . . . . . . . . . . . . . . 16 (๐ด โˆˆ โ„ค โ†’ (1 < ๐ด โ†” (1 + 1) โ‰ค ๐ด))
5453biimpa 476 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ (1 + 1) โ‰ค ๐ด)
5537breq1i 5148 . . . . . . . . . . . . . . 15 (2 โ‰ค ๐ด โ†” (1 + 1) โ‰ค ๐ด)
5654, 55sylibr 233 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ 2 โ‰ค ๐ด)
5749, 50, 563jca 1125 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง 1 < ๐ด) โ†’ (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด))
5857ex 412 . . . . . . . . . . . 12 (๐ด โˆˆ โ„ค โ†’ (1 < ๐ด โ†’ (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด)))
5958adantr 480 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (1 < ๐ด โ†’ (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด)))
601, 2, 593syl 18 . . . . . . . . . 10 (๐œ‘ โ†’ (1 < ๐ด โ†’ (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด)))
6114, 60mpd 15 . . . . . . . . 9 (๐œ‘ โ†’ (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด))
62 eluz2 12832 . . . . . . . . 9 (๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โ†” (2 โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค โˆง 2 โ‰ค ๐ด))
6361, 62sylibr 233 . . . . . . . 8 (๐œ‘ โ†’ ๐ด โˆˆ (โ„คโ‰ฅโ€˜2))
6463adantr 480 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐ด โˆˆ (โ„คโ‰ฅโ€˜2))
6564adantr 480 . . . . . 6 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ๐ด โˆˆ (โ„คโ‰ฅโ€˜2))
66 nprm 16632 . . . . . 6 ((๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐ด โˆˆ (โ„คโ‰ฅโ€˜2)) โ†’ ยฌ (๐‘˜ ยท ๐ด) โˆˆ โ„™)
6748, 65, 66syl2anc 583 . . . . 5 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ยฌ (๐‘˜ ยท ๐ด) โˆˆ โ„™)
68 eleq1 2815 . . . . . . 7 ((๐‘˜ ยท ๐ด) = ๐‘ โ†’ ((๐‘˜ ยท ๐ด) โˆˆ โ„™ โ†” ๐‘ โˆˆ โ„™))
6968notbid 318 . . . . . 6 ((๐‘˜ ยท ๐ด) = ๐‘ โ†’ (ยฌ (๐‘˜ ยท ๐ด) โˆˆ โ„™ โ†” ยฌ ๐‘ โˆˆ โ„™))
7069adantl 481 . . . . 5 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ (ยฌ (๐‘˜ ยท ๐ด) โˆˆ โ„™ โ†” ยฌ ๐‘ โˆˆ โ„™))
7167, 70mpbid 231 . . . 4 (((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โˆง (๐‘˜ ยท ๐ด) = ๐‘) โ†’ ยฌ ๐‘ โˆˆ โ„™)
7271rexlimdva2 3151 . . 3 (๐œ‘ โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐ด) = ๐‘ โ†’ ยฌ ๐‘ โˆˆ โ„™))
734, 72sylbid 239 . 2 (๐œ‘ โ†’ (๐ด โˆฅ ๐‘ โ†’ ยฌ ๐‘ โˆˆ โ„™))
741, 73mpd 15 1 (๐œ‘ โ†’ ยฌ ๐‘ โˆˆ โ„™)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3064   class class class wbr 5141  โ€˜cfv 6537  (class class class)co 7405  โ„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   ยท cmul 11117   < clt 11252   โ‰ค cle 11253  2c2 12271  โ„คcz 12562  โ„คโ‰ฅcuz 12826   โˆฅ cdvds 16204  โ„™cprime 16615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16205  df-prm 16616
This theorem is referenced by:  2pwp1prm  46829
  Copyright terms: Public domain W3C validator