MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   GIF version

Theorem dvdsnprmd 16323
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (𝜑 → 1 < 𝐴)
dvdsnprmd.l (𝜑𝐴 < 𝑁)
dvdsnprmd.d (𝜑𝐴𝑁)
Assertion
Ref Expression
dvdsnprmd (𝜑 → ¬ 𝑁 ∈ ℙ)

Proof of Theorem dvdsnprmd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (𝜑𝐴𝑁)
2 dvdszrcl 15896 . . . 4 (𝐴𝑁 → (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 15893 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
41, 2, 33syl 18 . . 3 (𝜑 → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
5 2z 12282 . . . . . . . 8 2 ∈ ℤ
65a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ∈ ℤ)
7 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ ℤ)
8 dvdsnprmd.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝑁)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝐴 < 𝑁)
109adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < 𝑁)
11 breq2 5074 . . . . . . . . . . 11 ((𝑘 · 𝐴) = 𝑁 → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1211adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1310, 12mpbird 256 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < (𝑘 · 𝐴))
14 dvdsnprmd.g . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐴)
15 zre 12253 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
16153ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝐴 ∈ ℝ)
17 zre 12253 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
18173ad2ant3 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
19 0lt1 11427 . . . . . . . . . . . . . . . . . . . 20 0 < 1
20 0red 10909 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 0 ∈ ℝ)
21 1red 10907 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 1 ∈ ℝ)
22 lttr 10982 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2320, 21, 15, 22syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2419, 23mpani 692 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → (1 < 𝐴 → 0 < 𝐴))
2524imp 406 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 0 < 𝐴)
26253adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 0 < 𝐴)
2716, 18, 263jca 1126 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
28273exp 1117 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℤ → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
301, 2, 293syl 18 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
3114, 30mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴)))
3231imp 406 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
3332adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
34 ltmulgt12 11766 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3533, 34syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3613, 35mpbird 256 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 1 < 𝑘)
37 df-2 11966 . . . . . . . . . 10 2 = (1 + 1)
3837breq1i 5077 . . . . . . . . 9 (2 ≤ 𝑘 ↔ (1 + 1) ≤ 𝑘)
39 1zzd 12281 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 1 ∈ ℤ)
40 zltp1le 12300 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4139, 40mpancom 684 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4241bicomd 222 . . . . . . . . . . 11 (𝑘 ∈ ℤ → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4443adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4538, 44syl5bb 282 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (2 ≤ 𝑘 ↔ 1 < 𝑘))
4636, 45mpbird 256 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ≤ 𝑘)
47 eluz2 12517 . . . . . . 7 (𝑘 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘))
486, 7, 46, 47syl3anbrc 1341 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ (ℤ‘2))
495a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ∈ ℤ)
50 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 𝐴 ∈ ℤ)
51 1zzd 12281 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 1 ∈ ℤ)
52 zltp1le 12300 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5351, 52mpancom 684 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5453biimpa 476 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (1 + 1) ≤ 𝐴)
5537breq1i 5077 . . . . . . . . . . . . . . 15 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5654, 55sylibr 233 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ≤ 𝐴)
5749, 50, 563jca 1126 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5857ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
5958adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
601, 2, 593syl 18 . . . . . . . . . 10 (𝜑 → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
6114, 60mpd 15 . . . . . . . . 9 (𝜑 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
62 eluz2 12517 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
6361, 62sylibr 233 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ‘2))
6463adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
6564adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 ∈ (ℤ‘2))
66 nprm 16321 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑘 · 𝐴) ∈ ℙ)
6748, 65, 66syl2anc 583 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ (𝑘 · 𝐴) ∈ ℙ)
68 eleq1 2826 . . . . . . 7 ((𝑘 · 𝐴) = 𝑁 → ((𝑘 · 𝐴) ∈ ℙ ↔ 𝑁 ∈ ℙ))
6968notbid 317 . . . . . 6 ((𝑘 · 𝐴) = 𝑁 → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7069adantl 481 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7167, 70mpbid 231 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ 𝑁 ∈ ℙ)
7271rexlimdva2 3215 . . 3 (𝜑 → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
734, 72sylbid 239 . 2 (𝜑 → (𝐴𝑁 → ¬ 𝑁 ∈ ℙ))
741, 73mpd 15 1 (𝜑 → ¬ 𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  2c2 11958  cz 12249  cuz 12511  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305
This theorem is referenced by:  2pwp1prm  44929
  Copyright terms: Public domain W3C validator