MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   GIF version

Theorem dvdsnprmd 16737
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (𝜑 → 1 < 𝐴)
dvdsnprmd.l (𝜑𝐴 < 𝑁)
dvdsnprmd.d (𝜑𝐴𝑁)
Assertion
Ref Expression
dvdsnprmd (𝜑 → ¬ 𝑁 ∈ ℙ)

Proof of Theorem dvdsnprmd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (𝜑𝐴𝑁)
2 dvdszrcl 16307 . . . 4 (𝐴𝑁 → (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16304 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
41, 2, 33syl 18 . . 3 (𝜑 → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
5 2z 12675 . . . . . . . 8 2 ∈ ℤ
65a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ∈ ℤ)
7 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ ℤ)
8 dvdsnprmd.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝑁)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝐴 < 𝑁)
109adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < 𝑁)
11 breq2 5170 . . . . . . . . . . 11 ((𝑘 · 𝐴) = 𝑁 → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1211adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1310, 12mpbird 257 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < (𝑘 · 𝐴))
14 dvdsnprmd.g . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐴)
15 zre 12643 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
16153ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝐴 ∈ ℝ)
17 zre 12643 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
18173ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
19 0lt1 11812 . . . . . . . . . . . . . . . . . . . 20 0 < 1
20 0red 11293 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 0 ∈ ℝ)
21 1red 11291 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 1 ∈ ℝ)
22 lttr 11366 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2320, 21, 15, 22syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2419, 23mpani 695 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → (1 < 𝐴 → 0 < 𝐴))
2524imp 406 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 0 < 𝐴)
26253adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 0 < 𝐴)
2716, 18, 263jca 1128 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
28273exp 1119 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℤ → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
301, 2, 293syl 18 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
3114, 30mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴)))
3231imp 406 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
3332adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
34 ltmulgt12 12155 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3533, 34syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3613, 35mpbird 257 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 1 < 𝑘)
37 df-2 12356 . . . . . . . . . 10 2 = (1 + 1)
3837breq1i 5173 . . . . . . . . 9 (2 ≤ 𝑘 ↔ (1 + 1) ≤ 𝑘)
39 1zzd 12674 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 1 ∈ ℤ)
40 zltp1le 12693 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4139, 40mpancom 687 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4241bicomd 223 . . . . . . . . . . 11 (𝑘 ∈ ℤ → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4443adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4538, 44bitrid 283 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (2 ≤ 𝑘 ↔ 1 < 𝑘))
4636, 45mpbird 257 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ≤ 𝑘)
47 eluz2 12909 . . . . . . 7 (𝑘 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘))
486, 7, 46, 47syl3anbrc 1343 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ (ℤ‘2))
495a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ∈ ℤ)
50 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 𝐴 ∈ ℤ)
51 1zzd 12674 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 1 ∈ ℤ)
52 zltp1le 12693 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5351, 52mpancom 687 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5453biimpa 476 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (1 + 1) ≤ 𝐴)
5537breq1i 5173 . . . . . . . . . . . . . . 15 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5654, 55sylibr 234 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ≤ 𝐴)
5749, 50, 563jca 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5857ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
5958adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
601, 2, 593syl 18 . . . . . . . . . 10 (𝜑 → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
6114, 60mpd 15 . . . . . . . . 9 (𝜑 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
62 eluz2 12909 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
6361, 62sylibr 234 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ‘2))
6463adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
6564adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 ∈ (ℤ‘2))
66 nprm 16735 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑘 · 𝐴) ∈ ℙ)
6748, 65, 66syl2anc 583 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ (𝑘 · 𝐴) ∈ ℙ)
68 eleq1 2832 . . . . . . 7 ((𝑘 · 𝐴) = 𝑁 → ((𝑘 · 𝐴) ∈ ℙ ↔ 𝑁 ∈ ℙ))
6968notbid 318 . . . . . 6 ((𝑘 · 𝐴) = 𝑁 → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7069adantl 481 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7167, 70mpbid 232 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ 𝑁 ∈ ℙ)
7271rexlimdva2 3163 . . 3 (𝜑 → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
734, 72sylbid 240 . 2 (𝜑 → (𝐴𝑁 → ¬ 𝑁 ∈ ℙ))
741, 73mpd 15 1 (𝜑 → ¬ 𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  2c2 12348  cz 12639  cuz 12903  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719
This theorem is referenced by:  2pwp1prm  47463
  Copyright terms: Public domain W3C validator