MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   GIF version

Theorem dvdsnprmd 16714
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (𝜑 → 1 < 𝐴)
dvdsnprmd.l (𝜑𝐴 < 𝑁)
dvdsnprmd.d (𝜑𝐴𝑁)
Assertion
Ref Expression
dvdsnprmd (𝜑 → ¬ 𝑁 ∈ ℙ)

Proof of Theorem dvdsnprmd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (𝜑𝐴𝑁)
2 dvdszrcl 16282 . . . 4 (𝐴𝑁 → (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16279 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
41, 2, 33syl 18 . . 3 (𝜑 → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
5 2z 12629 . . . . . . . 8 2 ∈ ℤ
65a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ∈ ℤ)
7 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ ℤ)
8 dvdsnprmd.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝑁)
98adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝐴 < 𝑁)
109adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < 𝑁)
11 breq2 5128 . . . . . . . . . . 11 ((𝑘 · 𝐴) = 𝑁 → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1211adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1310, 12mpbird 257 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < (𝑘 · 𝐴))
14 dvdsnprmd.g . . . . . . . . . . . . 13 (𝜑 → 1 < 𝐴)
15 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
16153ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝐴 ∈ ℝ)
17 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
18173ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
19 0lt1 11764 . . . . . . . . . . . . . . . . . . . 20 0 < 1
20 0red 11243 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 0 ∈ ℝ)
21 1red 11241 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → 1 ∈ ℝ)
22 lttr 11316 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2320, 21, 15, 22syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2419, 23mpani 696 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → (1 < 𝐴 → 0 < 𝐴))
2524imp 406 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 0 < 𝐴)
26253adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 0 < 𝐴)
2716, 18, 263jca 1128 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
28273exp 1119 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℤ → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
301, 2, 293syl 18 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
3114, 30mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴)))
3231imp 406 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
3332adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
34 ltmulgt12 12107 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3533, 34syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3613, 35mpbird 257 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 1 < 𝑘)
37 df-2 12308 . . . . . . . . . 10 2 = (1 + 1)
3837breq1i 5131 . . . . . . . . 9 (2 ≤ 𝑘 ↔ (1 + 1) ≤ 𝑘)
39 1zzd 12628 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 1 ∈ ℤ)
40 zltp1le 12647 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4139, 40mpancom 688 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4241bicomd 223 . . . . . . . . . . 11 (𝑘 ∈ ℤ → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4443adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4538, 44bitrid 283 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (2 ≤ 𝑘 ↔ 1 < 𝑘))
4636, 45mpbird 257 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ≤ 𝑘)
47 eluz2 12863 . . . . . . 7 (𝑘 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘))
486, 7, 46, 47syl3anbrc 1344 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ (ℤ‘2))
495a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ∈ ℤ)
50 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 𝐴 ∈ ℤ)
51 1zzd 12628 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 1 ∈ ℤ)
52 zltp1le 12647 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5351, 52mpancom 688 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5453biimpa 476 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (1 + 1) ≤ 𝐴)
5537breq1i 5131 . . . . . . . . . . . . . . 15 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5654, 55sylibr 234 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ≤ 𝐴)
5749, 50, 563jca 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5857ex 412 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
5958adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
601, 2, 593syl 18 . . . . . . . . . 10 (𝜑 → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
6114, 60mpd 15 . . . . . . . . 9 (𝜑 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
62 eluz2 12863 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
6361, 62sylibr 234 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ‘2))
6463adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
6564adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 ∈ (ℤ‘2))
66 nprm 16712 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑘 · 𝐴) ∈ ℙ)
6748, 65, 66syl2anc 584 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ (𝑘 · 𝐴) ∈ ℙ)
68 eleq1 2823 . . . . . . 7 ((𝑘 · 𝐴) = 𝑁 → ((𝑘 · 𝐴) ∈ ℙ ↔ 𝑁 ∈ ℙ))
6968notbid 318 . . . . . 6 ((𝑘 · 𝐴) = 𝑁 → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7069adantl 481 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7167, 70mpbid 232 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ 𝑁 ∈ ℙ)
7271rexlimdva2 3144 . . 3 (𝜑 → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
734, 72sylbid 240 . 2 (𝜑 → (𝐴𝑁 → ¬ 𝑁 ∈ ℙ))
741, 73mpd 15 1 (𝜑 → ¬ 𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  2c2 12300  cz 12593  cuz 12857  cdvds 16277  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696
This theorem is referenced by:  2pwp1prm  47570
  Copyright terms: Public domain W3C validator