MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsabseq Structured version   Visualization version   GIF version

Theorem dvdsabseq 15655
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 15604 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpr 487 . . . . . 6 ((𝑀𝑁𝑁𝑀) → 𝑁𝑀)
3 breq1 5060 . . . . . . . 8 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
4 0dvds 15622 . . . . . . . . . 10 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
54adantr 483 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀𝑀 = 0))
6 zcn 11978 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76abs00ad 14642 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((abs‘𝑀) = 0 ↔ 𝑀 = 0))
87bicomd 225 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
98adantr 483 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
105, 9bitrd 281 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀 ↔ (abs‘𝑀) = 0))
113, 10sylan9bb 512 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = 0))
12 fveq2 6663 . . . . . . . . . 10 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
13 abs0 14637 . . . . . . . . . 10 (abs‘0) = 0
1412, 13syl6eq 2870 . . . . . . . . 9 (𝑁 = 0 → (abs‘𝑁) = 0)
1514adantr 483 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0)
1615eqeq2d 2830 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0))
1711, 16bitr4d 284 . . . . . 6 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = (abs‘𝑁)))
182, 17syl5ib 246 . . . . 5 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁)))
1918expd 418 . . . 4 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
20 simprl 769 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
21 simpr 487 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2221adantl 484 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
23 neqne 3022 . . . . . . 7 𝑁 = 0 → 𝑁 ≠ 0)
2423adantr 483 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0)
25 dvdsleabs2 15654 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
2620, 22, 24, 25syl3anc 1366 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
27 simpr 487 . . . . . . . . . . 11 ((𝑁𝑀𝑀𝑁) → 𝑀𝑁)
28 breq1 5060 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
29 0dvds 15622 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
30 eqcom 2826 . . . . . . . . . . . . . . . 16 ((abs‘𝑁) = 0 ↔ 0 = (abs‘𝑁))
31 zcn 11978 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3231abs00ad 14642 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
3330, 32syl5rbbr 288 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁)))
3429, 33bitrd 281 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3534adantl 484 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3628, 35sylan9bb 512 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ 0 = (abs‘𝑁)))
37 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3837, 13syl6eq 2870 . . . . . . . . . . . . . 14 (𝑀 = 0 → (abs‘𝑀) = 0)
3938adantr 483 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0)
4039eqeq1d 2821 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁)))
4136, 40bitr4d 284 . . . . . . . . . . 11 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ (abs‘𝑀) = (abs‘𝑁)))
4227, 41syl5ib 246 . . . . . . . . . 10 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → (abs‘𝑀) = (abs‘𝑁)))
4342a1dd 50 . . . . . . . . 9 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
4443expcomd 419 . . . . . . . 8 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
4521adantl 484 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
46 simprl 769 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
47 neqne 3022 . . . . . . . . . . . 12 𝑀 = 0 → 𝑀 ≠ 0)
4847adantr 483 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0)
49 dvdsleabs2 15654 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
5045, 46, 48, 49syl3anc 1366 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
51 eqcom 2826 . . . . . . . . . . . . . 14 ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑁) = (abs‘𝑀))
5231abscld 14788 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
536abscld 14788 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℝ)
54 letri3 10718 . . . . . . . . . . . . . . 15 (((abs‘𝑁) ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5552, 53, 54syl2anr 598 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5651, 55syl5bb 285 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = (abs‘𝑁) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5756biimprd 250 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)))
5857expd 418 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
5958adantl 484 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6050, 59syld 47 . . . . . . . . 9 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6160a1d 25 . . . . . . . 8 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6244, 61pm2.61ian 810 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6362com34 91 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
6463adantl 484 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
6526, 64mpdd 43 . . . 4 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
6619, 65pm2.61ian 810 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
671, 66mpcom 38 . 2 (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))
6867imp 409 1 ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  cr 10528  0cc0 10529  cle 10668  cz 11973  abscabs 14585  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600
This theorem is referenced by:  dvdseq  15656
  Copyright terms: Public domain W3C validator