MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1modz1 Structured version   Visualization version   GIF version

Theorem p1modz1 16170
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 16168 . . 3 (𝑀𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 0red 11115 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 ∈ ℝ)
3 1red 11113 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 1 ∈ ℝ)
4 zre 12472 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 𝑀 ∈ ℝ)
62, 3, 53jca 1128 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ))
7 0lt1 11639 . . . . . . . . . . . . . . 15 0 < 1
87a1i 11 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 0 < 1)
98anim1i 615 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 < 1 ∧ 1 < 𝑀))
10 lttr 11189 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑀) → 0 < 𝑀))
116, 9, 10sylc 65 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 < 𝑀)
1211ex 412 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (1 < 𝑀 → 0 < 𝑀))
13 elnnz 12478 . . . . . . . . . . . 12 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1413simplbi2 500 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1512, 14syld 47 . . . . . . . . . 10 (𝑀 ∈ ℤ → (1 < 𝑀𝑀 ∈ ℕ))
1615adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀𝑀 ∈ ℕ))
1716imp 406 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℕ)
18 dvdsmod0 16169 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
1917, 18sylan 580 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
2019ex 412 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → (𝐴 mod 𝑀) = 0))
21 oveq1 7353 . . . . . . . . . . 11 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1))
22 0p1e1 12242 . . . . . . . . . . 11 (0 + 1) = 1
2321, 22eqtrdi 2782 . . . . . . . . . 10 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1)
2423oveq1d 7361 . . . . . . . . 9 ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
2524adantl 481 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
26 zre 12472 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2726adantl 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
2827adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝐴 ∈ ℝ)
29 1red 11113 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 1 ∈ ℝ)
3017nnrpd 12932 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℝ+)
3128, 29, 303jca 1128 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
3231adantr 480 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
33 modaddmod 13816 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3432, 33syl 17 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
354adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈ ℝ)
36 1mod 13807 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3735, 36sylan 580 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3837adantr 480 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1)
3925, 34, 383eqtr3d 2774 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1)
4039ex 412 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1))
4120, 40syld 47 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1))
4241ex 412 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀 → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1)))
4342com23 86 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)))
441, 43mpcom 38 . 2 (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))
4544imp 406 1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cn 12125  cz 12468  +crp 12890   mod cmo 13773  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696  df-mod 13774  df-dvds 16164
This theorem is referenced by:  lgslem4  27238
  Copyright terms: Public domain W3C validator