Proof of Theorem p1modz1
| Step | Hyp | Ref
| Expression |
| 1 | | dvdszrcl 16295 |
. . 3
⊢ (𝑀 ∥ 𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
| 2 | | 0red 11264 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 ∈
ℝ) |
| 3 | | 1red 11262 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 1 ∈
ℝ) |
| 4 | | zre 12617 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 5 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 𝑀 ∈ ℝ) |
| 6 | 2, 3, 5 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 ∈ ℝ
∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 7 | | 0lt1 11785 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
| 8 | 7 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 0 <
1) |
| 9 | 8 | anim1i 615 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 < 1 ∧ 1
< 𝑀)) |
| 10 | | lttr 11337 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1
< 𝑀) → 0 < 𝑀)) |
| 11 | 6, 9, 10 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 < 𝑀) |
| 12 | 11 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 0 < 𝑀)) |
| 13 | | elnnz 12623 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 <
𝑀)) |
| 14 | 13 | simplbi2 500 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (0 <
𝑀 → 𝑀 ∈ ℕ)) |
| 15 | 12, 14 | syld 47 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
| 16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
| 17 | 16 | imp 406 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝑀 ∈ ℕ) |
| 18 | | dvdsmod0 16296 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
| 19 | 17, 18 | sylan 580 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
| 20 | 19 | ex 412 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → (𝐴 mod 𝑀) = 0)) |
| 21 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1)) |
| 22 | | 0p1e1 12388 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
| 23 | 21, 22 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1) |
| 24 | 23 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
| 25 | 24 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
| 26 | | zre 12617 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈
ℝ) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝐴 ∈ ℝ) |
| 29 | | 1red 11262 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 1 ∈
ℝ) |
| 30 | 17 | nnrpd 13075 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝑀 ∈
ℝ+) |
| 31 | 28, 29, 30 | 3jca 1129 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑀 ∈
ℝ+)) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧
𝑀 ∈
ℝ+)) |
| 33 | | modaddmod 13950 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑀 ∈
ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
| 35 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈
ℝ) |
| 36 | | 1mod 13943 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
| 37 | 35, 36 | sylan 580 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1) |
| 39 | 25, 34, 38 | 3eqtr3d 2785 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1) |
| 40 | 39 | ex 412 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 41 | 20, 40 | syld 47 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 42 | 41 | ex 412 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1))) |
| 43 | 42 | com23 86 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))) |
| 44 | 1, 43 | mpcom 38 |
. 2
⊢ (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 45 | 44 | imp 406 |
1
⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) |