MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1modz1 Structured version   Visualization version   GIF version

Theorem p1modz1 16204
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 16202 . . 3 (𝑀𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 0red 11217 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 ∈ ℝ)
3 1red 11215 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 1 ∈ ℝ)
4 zre 12562 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 𝑀 ∈ ℝ)
62, 3, 53jca 1129 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ))
7 0lt1 11736 . . . . . . . . . . . . . . 15 0 < 1
87a1i 11 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 0 < 1)
98anim1i 616 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 < 1 ∧ 1 < 𝑀))
10 lttr 11290 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑀) → 0 < 𝑀))
116, 9, 10sylc 65 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 < 𝑀)
1211ex 414 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (1 < 𝑀 → 0 < 𝑀))
13 elnnz 12568 . . . . . . . . . . . 12 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1413simplbi2 502 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1512, 14syld 47 . . . . . . . . . 10 (𝑀 ∈ ℤ → (1 < 𝑀𝑀 ∈ ℕ))
1615adantr 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀𝑀 ∈ ℕ))
1716imp 408 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℕ)
18 dvdsmod0 16203 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
1917, 18sylan 581 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
2019ex 414 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → (𝐴 mod 𝑀) = 0))
21 oveq1 7416 . . . . . . . . . . 11 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1))
22 0p1e1 12334 . . . . . . . . . . 11 (0 + 1) = 1
2321, 22eqtrdi 2789 . . . . . . . . . 10 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1)
2423oveq1d 7424 . . . . . . . . 9 ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
2524adantl 483 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
26 zre 12562 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2726adantl 483 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
2827adantr 482 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝐴 ∈ ℝ)
29 1red 11215 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 1 ∈ ℝ)
3017nnrpd 13014 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℝ+)
3128, 29, 303jca 1129 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
3231adantr 482 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
33 modaddmod 13875 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3432, 33syl 17 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
354adantr 482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈ ℝ)
36 1mod 13868 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3735, 36sylan 581 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3837adantr 482 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1)
3925, 34, 383eqtr3d 2781 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1)
4039ex 414 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1))
4120, 40syld 47 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1))
4241ex 414 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀 → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1)))
4342com23 86 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)))
441, 43mpcom 38 . 2 (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))
4544imp 408 1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cn 12212  cz 12558  +crp 12974   mod cmo 13834  cdvds 16197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-mod 13835  df-dvds 16198
This theorem is referenced by:  lgslem4  26803
  Copyright terms: Public domain W3C validator