MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1modz1 Structured version   Visualization version   GIF version

Theorem p1modz1 16170
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 16168 . . 3 (𝑀𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 0red 11118 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 ∈ ℝ)
3 1red 11116 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 1 ∈ ℝ)
4 zre 12475 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 𝑀 ∈ ℝ)
62, 3, 53jca 1128 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ))
7 0lt1 11642 . . . . . . . . . . . . . . 15 0 < 1
87a1i 11 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 0 < 1)
98anim1i 615 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 < 1 ∧ 1 < 𝑀))
10 lttr 11192 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑀) → 0 < 𝑀))
116, 9, 10sylc 65 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 < 𝑀)
1211ex 412 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (1 < 𝑀 → 0 < 𝑀))
13 elnnz 12481 . . . . . . . . . . . 12 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1413simplbi2 500 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1512, 14syld 47 . . . . . . . . . 10 (𝑀 ∈ ℤ → (1 < 𝑀𝑀 ∈ ℕ))
1615adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀𝑀 ∈ ℕ))
1716imp 406 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℕ)
18 dvdsmod0 16169 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
1917, 18sylan 580 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
2019ex 412 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → (𝐴 mod 𝑀) = 0))
21 oveq1 7356 . . . . . . . . . . 11 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1))
22 0p1e1 12245 . . . . . . . . . . 11 (0 + 1) = 1
2321, 22eqtrdi 2780 . . . . . . . . . 10 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1)
2423oveq1d 7364 . . . . . . . . 9 ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
2524adantl 481 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
26 zre 12475 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2726adantl 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
2827adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝐴 ∈ ℝ)
29 1red 11116 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 1 ∈ ℝ)
3017nnrpd 12935 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℝ+)
3128, 29, 303jca 1128 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
3231adantr 480 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
33 modaddmod 13816 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3432, 33syl 17 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
354adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈ ℝ)
36 1mod 13807 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3735, 36sylan 580 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3837adantr 480 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1)
3925, 34, 383eqtr3d 2772 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1)
4039ex 412 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1))
4120, 40syld 47 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1))
4241ex 412 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀 → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1)))
4342com23 86 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)))
441, 43mpcom 38 . 2 (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))
4544imp 406 1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cn 12128  cz 12471  +crp 12893   mod cmo 13773  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-dvds 16164
This theorem is referenced by:  lgslem4  27209
  Copyright terms: Public domain W3C validator