Proof of Theorem p1modz1
Step | Hyp | Ref
| Expression |
1 | | dvdszrcl 15968 |
. . 3
⊢ (𝑀 ∥ 𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
2 | | 0red 10978 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 ∈
ℝ) |
3 | | 1red 10976 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 1 ∈
ℝ) |
4 | | zre 12323 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
5 | 4 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 𝑀 ∈ ℝ) |
6 | 2, 3, 5 | 3jca 1127 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 ∈ ℝ
∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
7 | | 0lt1 11497 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
8 | 7 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 0 <
1) |
9 | 8 | anim1i 615 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 < 1 ∧ 1
< 𝑀)) |
10 | | lttr 11051 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1
< 𝑀) → 0 < 𝑀)) |
11 | 6, 9, 10 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 < 𝑀) |
12 | 11 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 0 < 𝑀)) |
13 | | elnnz 12329 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 <
𝑀)) |
14 | 13 | simplbi2 501 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (0 <
𝑀 → 𝑀 ∈ ℕ)) |
15 | 12, 14 | syld 47 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
17 | 16 | imp 407 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝑀 ∈ ℕ) |
18 | | dvdsmod0 15969 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
19 | 17, 18 | sylan 580 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
20 | 19 | ex 413 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → (𝐴 mod 𝑀) = 0)) |
21 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1)) |
22 | | 0p1e1 12095 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
23 | 21, 22 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1) |
24 | 23 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
26 | | zre 12323 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
27 | 26 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈
ℝ) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝐴 ∈ ℝ) |
29 | | 1red 10976 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 1 ∈
ℝ) |
30 | 17 | nnrpd 12770 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝑀 ∈
ℝ+) |
31 | 28, 29, 30 | 3jca 1127 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑀 ∈
ℝ+)) |
32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧
𝑀 ∈
ℝ+)) |
33 | | modaddmod 13630 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑀 ∈
ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
35 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈
ℝ) |
36 | | 1mod 13623 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
37 | 35, 36 | sylan 580 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1) |
39 | 25, 34, 38 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1) |
40 | 39 | ex 413 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1)) |
41 | 20, 40 | syld 47 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1)) |
42 | 41 | ex 413 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1))) |
43 | 42 | com23 86 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))) |
44 | 1, 43 | mpcom 38 |
. 2
⊢ (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)) |
45 | 44 | imp 407 |
1
⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) |