MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulgcd Structured version   Visualization version   GIF version

Theorem dvdsmulgcd 16467
Description: A divisibility equivalent for odmulg 19435. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))

Proof of Theorem dvdsmulgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐶 ∈ ℤ)
2 dvdszrcl 16168 . . . . . 6 (𝐴 ∥ (𝐵 · 𝐶) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
32adantl 481 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
43simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∈ ℤ)
5 bezout 16454 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
61, 4, 5syl2anc 584 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
74adantr 480 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℤ)
8 simplll 774 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℤ)
9 simpllr 775 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℤ)
10 simprl 770 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
119, 10zmulcld 12586 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℤ)
128, 11zmulcld 12586 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐶 · 𝑥)) ∈ ℤ)
13 simprr 772 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
147, 13zmulcld 12586 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℤ)
158, 14zmulcld 12586 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) ∈ ℤ)
168, 9zmulcld 12586 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℤ)
17 simplr 768 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · 𝐶))
187, 16, 10, 17dvdsmultr1d 16208 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥))
198zcnd 12581 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℂ)
209zcnd 12581 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℂ)
2110zcnd 12581 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2219, 20, 21mulassd 11138 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2318, 22breqtrd 5118 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐶 · 𝑥)))
248, 13zmulcld 12586 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℤ)
25 dvdsmul1 16188 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
267, 24, 25syl2anc 584 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
277zcnd 12581 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℂ)
2813zcnd 12581 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
2919, 27, 28mul12d 11325 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) = (𝐴 · (𝐵 · 𝑦)))
3026, 29breqtrrd 5120 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))
317, 12, 15, 23, 30dvds2addd 16203 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3211zcnd 12581 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℂ)
3314zcnd 12581 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℂ)
3419, 32, 33adddid 11139 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))) = ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3531, 34breqtrrd 5120 . . . . 5 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
36 oveq2 7357 . . . . . 6 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐵 · (𝐶 gcd 𝐴)) = (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
3736breq2d 5104 . . . . 5 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ↔ 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦)))))
3835, 37syl5ibrcom 247 . . . 4 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
3938rexlimdvva 3186 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
406, 39mpd 15 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
41 dvdszrcl 16168 . . . . 5 (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4241adantl 481 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4342simpld 494 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∈ ℤ)
4442simprd 495 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ)
45 zmulcl 12524 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
4645adantr 480 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · 𝐶) ∈ ℤ)
47 simpr 484 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
48 simplr 768 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐶 ∈ ℤ)
49 gcddvds 16414 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5048, 43, 49syl2anc 584 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5150simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∥ 𝐶)
5248, 43gcdcld 16419 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℕ0)
5352nn0zd 12497 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℤ)
54 simpll 766 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐵 ∈ ℤ)
55 dvdscmul 16193 . . . . 5 (((𝐶 gcd 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5653, 48, 54, 55syl3anc 1373 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5751, 56mpd 15 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))
5843, 44, 46, 47, 57dvdstrd 16206 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · 𝐶))
5940, 58impbida 800 1 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  (class class class)co 7349   + caddc 11012   · cmul 11014  cz 12471  cdvds 16163   gcd cgcd 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406
This theorem is referenced by:  coprmdvds  16564  odmulg  19435  fpprwpprb  47744
  Copyright terms: Public domain W3C validator