MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulgcd Structured version   Visualization version   GIF version

Theorem dvdsmulgcd 16502
Description: A divisibility equivalent for odmulg 19470. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))

Proof of Theorem dvdsmulgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐶 ∈ ℤ)
2 dvdszrcl 16203 . . . . . 6 (𝐴 ∥ (𝐵 · 𝐶) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
32adantl 481 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
43simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∈ ℤ)
5 bezout 16489 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
61, 4, 5syl2anc 584 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
74adantr 480 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℤ)
8 simplll 774 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℤ)
9 simpllr 775 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℤ)
10 simprl 770 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
119, 10zmulcld 12620 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℤ)
128, 11zmulcld 12620 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐶 · 𝑥)) ∈ ℤ)
13 simprr 772 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
147, 13zmulcld 12620 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℤ)
158, 14zmulcld 12620 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) ∈ ℤ)
168, 9zmulcld 12620 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℤ)
17 simplr 768 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · 𝐶))
187, 16, 10, 17dvdsmultr1d 16243 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥))
198zcnd 12615 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℂ)
209zcnd 12615 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℂ)
2110zcnd 12615 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2219, 20, 21mulassd 11173 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2318, 22breqtrd 5128 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐶 · 𝑥)))
248, 13zmulcld 12620 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℤ)
25 dvdsmul1 16223 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
267, 24, 25syl2anc 584 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
277zcnd 12615 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℂ)
2813zcnd 12615 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
2919, 27, 28mul12d 11359 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) = (𝐴 · (𝐵 · 𝑦)))
3026, 29breqtrrd 5130 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))
317, 12, 15, 23, 30dvds2addd 16238 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3211zcnd 12615 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℂ)
3314zcnd 12615 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℂ)
3419, 32, 33adddid 11174 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))) = ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3531, 34breqtrrd 5130 . . . . 5 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
36 oveq2 7377 . . . . . 6 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐵 · (𝐶 gcd 𝐴)) = (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
3736breq2d 5114 . . . . 5 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ↔ 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦)))))
3835, 37syl5ibrcom 247 . . . 4 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
3938rexlimdvva 3192 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
406, 39mpd 15 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
41 dvdszrcl 16203 . . . . 5 (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4241adantl 481 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4342simpld 494 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∈ ℤ)
4442simprd 495 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ)
45 zmulcl 12558 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
4645adantr 480 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · 𝐶) ∈ ℤ)
47 simpr 484 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
48 simplr 768 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐶 ∈ ℤ)
49 gcddvds 16449 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5048, 43, 49syl2anc 584 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5150simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∥ 𝐶)
5248, 43gcdcld 16454 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℕ0)
5352nn0zd 12531 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℤ)
54 simpll 766 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐵 ∈ ℤ)
55 dvdscmul 16228 . . . . 5 (((𝐶 gcd 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5653, 48, 54, 55syl3anc 1373 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5751, 56mpd 15 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))
5843, 44, 46, 47, 57dvdstrd 16241 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · 𝐶))
5940, 58impbida 800 1 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  (class class class)co 7369   + caddc 11047   · cmul 11049  cz 12505  cdvds 16198   gcd cgcd 16440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441
This theorem is referenced by:  coprmdvds  16599  odmulg  19470  fpprwpprb  47734
  Copyright terms: Public domain W3C validator