MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulgcd Structured version   Visualization version   GIF version

Theorem dvdsmulgcd 16590
Description: A divisibility equivalent for odmulg 19589. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))

Proof of Theorem dvdsmulgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐶 ∈ ℤ)
2 dvdszrcl 16292 . . . . . 6 (𝐴 ∥ (𝐵 · 𝐶) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
32adantl 481 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
43simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∈ ℤ)
5 bezout 16577 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
61, 4, 5syl2anc 584 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
74adantr 480 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℤ)
8 simplll 775 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℤ)
9 simpllr 776 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℤ)
10 simprl 771 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
119, 10zmulcld 12726 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℤ)
128, 11zmulcld 12726 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐶 · 𝑥)) ∈ ℤ)
13 simprr 773 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
147, 13zmulcld 12726 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℤ)
158, 14zmulcld 12726 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) ∈ ℤ)
168, 9zmulcld 12726 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℤ)
17 simplr 769 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · 𝐶))
187, 16, 10, 17dvdsmultr1d 16331 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥))
198zcnd 12721 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℂ)
209zcnd 12721 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℂ)
2110zcnd 12721 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2219, 20, 21mulassd 11282 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2318, 22breqtrd 5174 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐶 · 𝑥)))
248, 13zmulcld 12726 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℤ)
25 dvdsmul1 16312 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
267, 24, 25syl2anc 584 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
277zcnd 12721 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℂ)
2813zcnd 12721 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
2919, 27, 28mul12d 11468 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) = (𝐴 · (𝐵 · 𝑦)))
3026, 29breqtrrd 5176 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))
317, 12, 15, 23, 30dvds2addd 16326 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3211zcnd 12721 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℂ)
3314zcnd 12721 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℂ)
3419, 32, 33adddid 11283 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))) = ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3531, 34breqtrrd 5176 . . . . 5 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
36 oveq2 7439 . . . . . 6 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐵 · (𝐶 gcd 𝐴)) = (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
3736breq2d 5160 . . . . 5 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ↔ 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦)))))
3835, 37syl5ibrcom 247 . . . 4 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
3938rexlimdvva 3211 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
406, 39mpd 15 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
41 dvdszrcl 16292 . . . . 5 (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4241adantl 481 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4342simpld 494 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∈ ℤ)
4442simprd 495 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ)
45 zmulcl 12664 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
4645adantr 480 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · 𝐶) ∈ ℤ)
47 simpr 484 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
48 simplr 769 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐶 ∈ ℤ)
49 gcddvds 16537 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5048, 43, 49syl2anc 584 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5150simpld 494 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∥ 𝐶)
5248, 43gcdcld 16542 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℕ0)
5352nn0zd 12637 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℤ)
54 simpll 767 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐵 ∈ ℤ)
55 dvdscmul 16317 . . . . 5 (((𝐶 gcd 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5653, 48, 54, 55syl3anc 1370 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5751, 56mpd 15 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))
5843, 44, 46, 47, 57dvdstrd 16329 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · 𝐶))
5940, 58impbida 801 1 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  (class class class)co 7431   + caddc 11156   · cmul 11158  cz 12611  cdvds 16287   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529
This theorem is referenced by:  coprmdvds  16687  odmulg  19589  fpprwpprb  47665
  Copyright terms: Public domain W3C validator