MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulgcd Structured version   Visualization version   GIF version

Theorem dvdsmulgcd 16552
Description: A divisibility equivalent for odmulg 19550. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))

Proof of Theorem dvdsmulgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐶 ∈ ℤ)
2 dvdszrcl 16256 . . . . . 6 (𝐴 ∥ (𝐵 · 𝐶) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
32adantl 480 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (𝐴 ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ))
43simpld 493 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∈ ℤ)
5 bezout 16539 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
61, 4, 5syl2anc 582 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)))
74adantr 479 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℤ)
8 simplll 773 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℤ)
9 simpllr 774 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℤ)
10 simprl 769 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
119, 10zmulcld 12718 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℤ)
128, 11zmulcld 12718 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐶 · 𝑥)) ∈ ℤ)
13 simprr 771 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
147, 13zmulcld 12718 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℤ)
158, 14zmulcld 12718 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) ∈ ℤ)
168, 9zmulcld 12718 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℤ)
17 simplr 767 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · 𝐶))
187, 16, 10, 17dvdsmultr1d 16294 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · 𝐶) · 𝑥))
198zcnd 12713 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐵 ∈ ℂ)
209zcnd 12713 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐶 ∈ ℂ)
2110zcnd 12713 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
2219, 20, 21mulassd 11278 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2318, 22breqtrd 5171 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐶 · 𝑥)))
248, 13zmulcld 12718 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℤ)
25 dvdsmul1 16275 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
267, 24, 25syl2anc 582 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐴 · (𝐵 · 𝑦)))
277zcnd 12713 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℂ)
2813zcnd 12713 . . . . . . . . 9 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
2919, 27, 28mul12d 11464 . . . . . . . 8 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · (𝐴 · 𝑦)) = (𝐴 · (𝐵 · 𝑦)))
3026, 29breqtrrd 5173 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · (𝐴 · 𝑦)))
317, 12, 15, 23, 30dvds2addd 16289 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3211zcnd 12713 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐶 · 𝑥) ∈ ℂ)
3314zcnd 12713 . . . . . . 7 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐴 · 𝑦) ∈ ℂ)
3419, 32, 33adddid 11279 . . . . . 6 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))) = ((𝐵 · (𝐶 · 𝑥)) + (𝐵 · (𝐴 · 𝑦))))
3531, 34breqtrrd 5173 . . . . 5 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
36 oveq2 7424 . . . . . 6 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐵 · (𝐶 gcd 𝐴)) = (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦))))
3736breq2d 5157 . . . . 5 ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) ↔ 𝐴 ∥ (𝐵 · ((𝐶 · 𝑥) + (𝐴 · 𝑦)))))
3835, 37syl5ibrcom 246 . . . 4 ((((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
3938rexlimdvva 3202 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 gcd 𝐴) = ((𝐶 · 𝑥) + (𝐴 · 𝑦)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
406, 39mpd 15 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · 𝐶)) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
41 dvdszrcl 16256 . . . . 5 (𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4241adantl 480 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐴 ∈ ℤ ∧ (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ))
4342simpld 493 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∈ ℤ)
4442simprd 494 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∈ ℤ)
45 zmulcl 12657 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
4645adantr 479 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · 𝐶) ∈ ℤ)
47 simpr 483 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))
48 simplr 767 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐶 ∈ ℤ)
49 gcddvds 16498 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5048, 43, 49syl2anc 582 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 ∧ (𝐶 gcd 𝐴) ∥ 𝐴))
5150simpld 493 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∥ 𝐶)
5248, 43gcdcld 16503 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℕ0)
5352nn0zd 12630 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐶 gcd 𝐴) ∈ ℤ)
54 simpll 765 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐵 ∈ ℤ)
55 dvdscmul 16280 . . . . 5 (((𝐶 gcd 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5653, 48, 54, 55syl3anc 1368 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → ((𝐶 gcd 𝐴) ∥ 𝐶 → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶)))
5751, 56mpd 15 . . 3 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → (𝐵 · (𝐶 gcd 𝐴)) ∥ (𝐵 · 𝐶))
5843, 44, 46, 47, 57dvdstrd 16292 . 2 (((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))) → 𝐴 ∥ (𝐵 · 𝐶))
5940, 58impbida 799 1 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5145  (class class class)co 7416   + caddc 11152   · cmul 11154  cz 12604  cdvds 16251   gcd cgcd 16489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-gcd 16490
This theorem is referenced by:  coprmdvds  16649  odmulg  19550  fpprwpprb  47348
  Copyright terms: Public domain W3C validator