![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdschrmulg | Structured version Visualization version GIF version |
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
Ref | Expression |
---|---|
dvdschrmulg.1 | ⊢ 𝐶 = (chr‘𝑅) |
dvdschrmulg.2 | ⊢ 𝐵 = (Base‘𝑅) |
dvdschrmulg.3 | ⊢ · = (.g‘𝑅) |
dvdschrmulg.4 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdschrmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Ring) | |
2 | dvdszrcl 16227 | . . . . 5 ⊢ (𝐶 ∥ 𝑁 → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | 2 | simprd 495 | . . . 4 ⊢ (𝐶 ∥ 𝑁 → 𝑁 ∈ ℤ) |
4 | 3 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℤ) |
5 | dvdschrmulg.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2727 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 20191 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
9 | simp3 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
10 | dvdschrmulg.3 | . . . 4 ⊢ · = (.g‘𝑅) | |
11 | eqid 2727 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 5, 10, 11 | mulgass2 20234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
13 | 1, 4, 8, 9, 12 | syl13anc 1370 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
14 | ringgrp 20169 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
15 | 1, 14 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Grp) |
16 | eqid 2727 | . . . . . . 7 ⊢ (od‘𝑅) = (od‘𝑅) | |
17 | dvdschrmulg.1 | . . . . . . 7 ⊢ 𝐶 = (chr‘𝑅) | |
18 | 16, 6, 17 | chrval 21440 | . . . . . 6 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
19 | simp2 1135 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∥ 𝑁) | |
20 | 18, 19 | eqbrtrid 5177 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) |
21 | dvdschrmulg.4 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
22 | 5, 16, 10, 21 | oddvdsi 19494 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵 ∧ ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) → (𝑁 · (1r‘𝑅)) = 0 ) |
23 | 15, 8, 20, 22 | syl3anc 1369 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · (1r‘𝑅)) = 0 ) |
24 | 23 | oveq1d 7429 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = ( 0 (.r‘𝑅)𝐴)) |
25 | 5, 11, 21 | ringlz 20218 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
26 | 25 | 3adant2 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
27 | 24, 26 | eqtrd 2767 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = 0 ) |
28 | 5, 11, 6 | ringlidm 20194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
29 | 28 | 3adant2 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
30 | 29 | oveq2d 7430 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴)) = (𝑁 · 𝐴)) |
31 | 13, 27, 30 | 3eqtr3rd 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℤcz 12580 ∥ cdvds 16222 Basecbs 17171 .rcmulr 17225 0gc0g 17412 Grpcgrp 18881 .gcmg 19014 odcod 19470 1rcur 20112 Ringcrg 20164 chrcchr 21414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-plusg 17237 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-sbg 18886 df-mulg 19015 df-od 19474 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-chr 21418 |
This theorem is referenced by: freshmansdream 21495 |
Copyright terms: Public domain | W3C validator |