| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdschrmulg | Structured version Visualization version GIF version | ||
| Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| dvdschrmulg.1 | ⊢ 𝐶 = (chr‘𝑅) |
| dvdschrmulg.2 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdschrmulg.3 | ⊢ · = (.g‘𝑅) |
| dvdschrmulg.4 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| dvdschrmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 2 | dvdszrcl 16168 | . . . . 5 ⊢ (𝐶 ∥ 𝑁 → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 3 | 2 | simprd 495 | . . . 4 ⊢ (𝐶 ∥ 𝑁 → 𝑁 ∈ ℤ) |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℤ) |
| 5 | dvdschrmulg.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 5, 6 | ringidcl 20184 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 8 | 1, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 10 | dvdschrmulg.3 | . . . 4 ⊢ · = (.g‘𝑅) | |
| 11 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 5, 10, 11 | mulgass2 20228 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
| 13 | 1, 4, 8, 9, 12 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
| 14 | ringgrp 20157 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 15 | 1, 14 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 16 | eqid 2731 | . . . . . . 7 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 17 | dvdschrmulg.1 | . . . . . . 7 ⊢ 𝐶 = (chr‘𝑅) | |
| 18 | 16, 6, 17 | chrval 21461 | . . . . . 6 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
| 19 | simp2 1137 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∥ 𝑁) | |
| 20 | 18, 19 | eqbrtrid 5126 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) |
| 21 | dvdschrmulg.4 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 22 | 5, 16, 10, 21 | oddvdsi 19461 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵 ∧ ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) → (𝑁 · (1r‘𝑅)) = 0 ) |
| 23 | 15, 8, 20, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · (1r‘𝑅)) = 0 ) |
| 24 | 23 | oveq1d 7361 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = ( 0 (.r‘𝑅)𝐴)) |
| 25 | 5, 11, 21 | ringlz 20212 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
| 26 | 25 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
| 27 | 24, 26 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = 0 ) |
| 28 | 5, 11, 6 | ringlidm 20188 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
| 29 | 28 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
| 30 | 29 | oveq2d 7362 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴)) = (𝑁 · 𝐴)) |
| 31 | 13, 27, 30 | 3eqtr3rd 2775 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℤcz 12468 ∥ cdvds 16163 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Grpcgrp 18846 .gcmg 18980 odcod 19437 1rcur 20100 Ringcrg 20152 chrcchr 21439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-od 19441 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-chr 21443 |
| This theorem is referenced by: freshmansdream 21512 |
| Copyright terms: Public domain | W3C validator |