![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdschrmulg | Structured version Visualization version GIF version |
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
Ref | Expression |
---|---|
dvdschrmulg.1 | ⊢ 𝐶 = (chr‘𝑅) |
dvdschrmulg.2 | ⊢ 𝐵 = (Base‘𝑅) |
dvdschrmulg.3 | ⊢ · = (.g‘𝑅) |
dvdschrmulg.4 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdschrmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Ring) | |
2 | dvdszrcl 16292 | . . . . 5 ⊢ (𝐶 ∥ 𝑁 → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | 2 | simprd 495 | . . . 4 ⊢ (𝐶 ∥ 𝑁 → 𝑁 ∈ ℤ) |
4 | 3 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℤ) |
5 | dvdschrmulg.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2735 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 20280 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
9 | simp3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
10 | dvdschrmulg.3 | . . . 4 ⊢ · = (.g‘𝑅) | |
11 | eqid 2735 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 5, 10, 11 | mulgass2 20323 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
13 | 1, 4, 8, 9, 12 | syl13anc 1371 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
14 | ringgrp 20256 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
15 | 1, 14 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Grp) |
16 | eqid 2735 | . . . . . . 7 ⊢ (od‘𝑅) = (od‘𝑅) | |
17 | dvdschrmulg.1 | . . . . . . 7 ⊢ 𝐶 = (chr‘𝑅) | |
18 | 16, 6, 17 | chrval 21556 | . . . . . 6 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
19 | simp2 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∥ 𝑁) | |
20 | 18, 19 | eqbrtrid 5183 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) |
21 | dvdschrmulg.4 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
22 | 5, 16, 10, 21 | oddvdsi 19581 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵 ∧ ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) → (𝑁 · (1r‘𝑅)) = 0 ) |
23 | 15, 8, 20, 22 | syl3anc 1370 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · (1r‘𝑅)) = 0 ) |
24 | 23 | oveq1d 7446 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = ( 0 (.r‘𝑅)𝐴)) |
25 | 5, 11, 21 | ringlz 20307 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
26 | 25 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
27 | 24, 26 | eqtrd 2775 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = 0 ) |
28 | 5, 11, 6 | ringlidm 20283 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
29 | 28 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
30 | 29 | oveq2d 7447 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴)) = (𝑁 · 𝐴)) |
31 | 13, 27, 30 | 3eqtr3rd 2784 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 ∥ cdvds 16287 Basecbs 17245 .rcmulr 17299 0gc0g 17486 Grpcgrp 18964 .gcmg 19098 odcod 19557 1rcur 20199 Ringcrg 20251 chrcchr 21530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-od 19561 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-chr 21534 |
This theorem is referenced by: freshmansdream 21611 |
Copyright terms: Public domain | W3C validator |