Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdschrmulg | Structured version Visualization version GIF version |
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
Ref | Expression |
---|---|
dvdschrmulg.1 | ⊢ 𝐶 = (chr‘𝑅) |
dvdschrmulg.2 | ⊢ 𝐵 = (Base‘𝑅) |
dvdschrmulg.3 | ⊢ · = (.g‘𝑅) |
dvdschrmulg.4 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdschrmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Ring) | |
2 | dvdszrcl 15968 | . . . . 5 ⊢ (𝐶 ∥ 𝑁 → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | 2 | simprd 496 | . . . 4 ⊢ (𝐶 ∥ 𝑁 → 𝑁 ∈ ℤ) |
4 | 3 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℤ) |
5 | dvdschrmulg.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 19807 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
9 | simp3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
10 | dvdschrmulg.3 | . . . 4 ⊢ · = (.g‘𝑅) | |
11 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 5, 10, 11 | mulgass2 19840 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
13 | 1, 4, 8, 9, 12 | syl13anc 1371 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴))) |
14 | ringgrp 19788 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
15 | 1, 14 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Grp) |
16 | eqid 2738 | . . . . . . 7 ⊢ (od‘𝑅) = (od‘𝑅) | |
17 | dvdschrmulg.1 | . . . . . . 7 ⊢ 𝐶 = (chr‘𝑅) | |
18 | 16, 6, 17 | chrval 20729 | . . . . . 6 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
19 | simp2 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∥ 𝑁) | |
20 | 18, 19 | eqbrtrid 5109 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) |
21 | dvdschrmulg.4 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
22 | 5, 16, 10, 21 | oddvdsi 19156 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵 ∧ ((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁) → (𝑁 · (1r‘𝑅)) = 0 ) |
23 | 15, 8, 20, 22 | syl3anc 1370 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · (1r‘𝑅)) = 0 ) |
24 | 23 | oveq1d 7290 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = ( 0 (.r‘𝑅)𝐴)) |
25 | 5, 11, 21 | ringlz 19826 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
26 | 25 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ( 0 (.r‘𝑅)𝐴) = 0 ) |
27 | 24, 26 | eqtrd 2778 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((𝑁 · (1r‘𝑅))(.r‘𝑅)𝐴) = 0 ) |
28 | 5, 11, 6 | ringlidm 19810 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
29 | 28 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝐴) = 𝐴) |
30 | 29 | oveq2d 7291 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · ((1r‘𝑅)(.r‘𝑅)𝐴)) = (𝑁 · 𝐴)) |
31 | 13, 27, 30 | 3eqtr3rd 2787 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℤcz 12319 ∥ cdvds 15963 Basecbs 16912 .rcmulr 16963 0gc0g 17150 Grpcgrp 18577 .gcmg 18700 odcod 19132 1rcur 19737 Ringcrg 19783 chrcchr 20703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-od 19136 df-mgp 19721 df-ur 19738 df-ring 19785 df-chr 20707 |
This theorem is referenced by: freshmansdream 31484 |
Copyright terms: Public domain | W3C validator |