MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdschrmulg Structured version   Visualization version   GIF version

Theorem dvdschrmulg 21494
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
dvdschrmulg.1 𝐶 = (chr‘𝑅)
dvdschrmulg.2 𝐵 = (Base‘𝑅)
dvdschrmulg.3 · = (.g𝑅)
dvdschrmulg.4 0 = (0g𝑅)
Assertion
Ref Expression
dvdschrmulg ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → (𝑁 · 𝐴) = 0 )

Proof of Theorem dvdschrmulg
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → 𝑅 ∈ Ring)
2 dvdszrcl 16282 . . . . 5 (𝐶𝑁 → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32simprd 495 . . . 4 (𝐶𝑁𝑁 ∈ ℤ)
433ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → 𝑁 ∈ ℤ)
5 dvdschrmulg.2 . . . . 5 𝐵 = (Base‘𝑅)
6 eqid 2736 . . . . 5 (1r𝑅) = (1r𝑅)
75, 6ringidcl 20230 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
81, 7syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → (1r𝑅) ∈ 𝐵)
9 simp3 1138 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → 𝐴𝐵)
10 dvdschrmulg.3 . . . 4 · = (.g𝑅)
11 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
125, 10, 11mulgass2 20274 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ (1r𝑅) ∈ 𝐵𝐴𝐵)) → ((𝑁 · (1r𝑅))(.r𝑅)𝐴) = (𝑁 · ((1r𝑅)(.r𝑅)𝐴)))
131, 4, 8, 9, 12syl13anc 1374 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ((𝑁 · (1r𝑅))(.r𝑅)𝐴) = (𝑁 · ((1r𝑅)(.r𝑅)𝐴)))
14 ringgrp 20203 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
151, 14syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → 𝑅 ∈ Grp)
16 eqid 2736 . . . . . . 7 (od‘𝑅) = (od‘𝑅)
17 dvdschrmulg.1 . . . . . . 7 𝐶 = (chr‘𝑅)
1816, 6, 17chrval 21489 . . . . . 6 ((od‘𝑅)‘(1r𝑅)) = 𝐶
19 simp2 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → 𝐶𝑁)
2018, 19eqbrtrid 5159 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ((od‘𝑅)‘(1r𝑅)) ∥ 𝑁)
21 dvdschrmulg.4 . . . . . 6 0 = (0g𝑅)
225, 16, 10, 21oddvdsi 19534 . . . . 5 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵 ∧ ((od‘𝑅)‘(1r𝑅)) ∥ 𝑁) → (𝑁 · (1r𝑅)) = 0 )
2315, 8, 20, 22syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → (𝑁 · (1r𝑅)) = 0 )
2423oveq1d 7425 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ((𝑁 · (1r𝑅))(.r𝑅)𝐴) = ( 0 (.r𝑅)𝐴))
255, 11, 21ringlz 20258 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ( 0 (.r𝑅)𝐴) = 0 )
26253adant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ( 0 (.r𝑅)𝐴) = 0 )
2724, 26eqtrd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ((𝑁 · (1r𝑅))(.r𝑅)𝐴) = 0 )
285, 11, 6ringlidm 20234 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ((1r𝑅)(.r𝑅)𝐴) = 𝐴)
29283adant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → ((1r𝑅)(.r𝑅)𝐴) = 𝐴)
3029oveq2d 7426 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → (𝑁 · ((1r𝑅)(.r𝑅)𝐴)) = (𝑁 · 𝐴))
3113, 27, 303eqtr3rd 2780 1 ((𝑅 ∈ Ring ∧ 𝐶𝑁𝐴𝐵) → (𝑁 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cz 12593  cdvds 16277  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  .gcmg 19055  odcod 19510  1rcur 20146  Ringcrg 20198  chrcchr 21467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-chr 21471
This theorem is referenced by:  freshmansdream  21540
  Copyright terms: Public domain W3C validator