MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divconjdvds Structured version   Visualization version   GIF version

Theorem divconjdvds 15668
Description: If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
divconjdvds ((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)

Proof of Theorem divconjdvds
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 15615 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpll 765 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
3 oveq1 7166 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚 · (𝑁 / 𝑀)) = (𝑀 · (𝑁 / 𝑀)))
43eqeq1d 2826 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
54adantl 484 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑚 = 𝑀) → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
6 zcn 11989 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
76adantl 484 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
87adantr 483 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
9 zcn 11989 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
109adantr 483 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1110adantr 483 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
12 simpr 487 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
138, 11, 12divcan2d 11421 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
142, 5, 13rspcedvd 3629 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)
1514adantr 483 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)
16 simpr 487 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → 𝑀𝑁)
17 simpr 487 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1817adantr 483 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
192, 12, 183jca 1124 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ))
2019adantr 483 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ))
21 dvdsval2 15613 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
2220, 21syl 17 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
2316, 22mpbid 234 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑁 / 𝑀) ∈ ℤ)
2418adantr 483 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
25 divides 15612 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁))
2623, 24, 25syl2anc 586 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁))
2715, 26mpbird 259 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑁 / 𝑀) ∥ 𝑁)
2827exp31 422 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑀𝑁 → (𝑁 / 𝑀) ∥ 𝑁)))
2928com3r 87 . . 3 (𝑀𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁)))
301, 29mpd 15 . 2 (𝑀𝑁 → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁))
3130imp 409 1 ((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142   class class class wbr 5069  (class class class)co 7159  cc 10538  0cc0 10540   · cmul 10545   / cdiv 11300  cz 11984  cdvds 15610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-z 11985  df-dvds 15611
This theorem is referenced by:  dvdsdivcl  15669  fincygsubgodexd  19238
  Copyright terms: Public domain W3C validator