| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divconjdvds | Structured version Visualization version GIF version | ||
| Description: If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
| Ref | Expression |
|---|---|
| divconjdvds | ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 16282 | . . 3 ⊢ (𝑀 ∥ 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | simpll 766 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ) | |
| 3 | oveq1 7417 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝑁 / 𝑀)) = (𝑀 · (𝑁 / 𝑀))) | |
| 4 | 3 | eqeq1d 2738 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑚 = 𝑀) → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 6 | zcn 12598 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ) |
| 9 | zcn 12598 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
| 12 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
| 13 | 8, 11, 12 | divcan2d 12024 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 14 | 2, 5, 13 | rspcedvd 3608 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑀 ∥ 𝑁) | |
| 17 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 18 | 17 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ) |
| 19 | 2, 12, 18 | 3jca 1128 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 21 | dvdsval2 16280 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
| 22 | 20, 21 | syl 17 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 23 | 16, 22 | mpbid 232 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 24 | 18 | adantr 480 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 25 | divides 16279 | . . . . . . 7 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) |
| 27 | 15, 26 | mpbird 257 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∥ 𝑁) |
| 28 | 27 | exp31 419 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑀 ∥ 𝑁 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 29 | 28 | com3r 87 | . . 3 ⊢ (𝑀 ∥ 𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 30 | 1, 29 | mpd 15 | . 2 ⊢ (𝑀 ∥ 𝑁 → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁)) |
| 31 | 30 | imp 406 | 1 ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 class class class wbr 5124 (class class class)co 7410 ℂcc 11132 0cc0 11134 · cmul 11139 / cdiv 11899 ℤcz 12593 ∥ cdvds 16277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-z 12594 df-dvds 16278 |
| This theorem is referenced by: dvdsdivcl 16340 fincygsubgodexd 20101 |
| Copyright terms: Public domain | W3C validator |