MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divconjdvds Structured version   Visualization version   GIF version

Theorem divconjdvds 16228
Description: If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
divconjdvds ((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)

Proof of Theorem divconjdvds
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 16170 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpll 766 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
3 oveq1 7359 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚 · (𝑁 / 𝑀)) = (𝑀 · (𝑁 / 𝑀)))
43eqeq1d 2735 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
54adantl 481 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑚 = 𝑀) → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
6 zcn 12480 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
76adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
87adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
9 zcn 12480 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
109adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1110adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
12 simpr 484 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
138, 11, 12divcan2d 11906 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
142, 5, 13rspcedvd 3575 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)
1514adantr 480 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)
16 simpr 484 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → 𝑀𝑁)
17 simpr 484 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1817adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
192, 12, 183jca 1128 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ))
2019adantr 480 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ))
21 dvdsval2 16168 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
2220, 21syl 17 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
2316, 22mpbid 232 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑁 / 𝑀) ∈ ℤ)
2418adantr 480 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
25 divides 16167 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁))
2623, 24, 25syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁))
2715, 26mpbird 257 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀𝑁) → (𝑁 / 𝑀) ∥ 𝑁)
2827exp31 419 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑀𝑁 → (𝑁 / 𝑀) ∥ 𝑁)))
2928com3r 87 . . 3 (𝑀𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁)))
301, 29mpd 15 . 2 (𝑀𝑁 → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁))
3130imp 406 1 ((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5093  (class class class)co 7352  cc 11011  0cc0 11013   · cmul 11018   / cdiv 11781  cz 12475  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-z 12476  df-dvds 16166
This theorem is referenced by:  dvdsdivcl  16229  fincygsubgodexd  20029
  Copyright terms: Public domain W3C validator