| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divconjdvds | Structured version Visualization version GIF version | ||
| Description: If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
| Ref | Expression |
|---|---|
| divconjdvds | ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 16234 | . . 3 ⊢ (𝑀 ∥ 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | simpll 766 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ) | |
| 3 | oveq1 7397 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝑁 / 𝑀)) = (𝑀 · (𝑁 / 𝑀))) | |
| 4 | 3 | eqeq1d 2732 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑚 = 𝑀) → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 6 | zcn 12541 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ) |
| 9 | zcn 12541 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
| 12 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
| 13 | 8, 11, 12 | divcan2d 11967 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 14 | 2, 5, 13 | rspcedvd 3593 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑀 ∥ 𝑁) | |
| 17 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 18 | 17 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ) |
| 19 | 2, 12, 18 | 3jca 1128 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 21 | dvdsval2 16232 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
| 22 | 20, 21 | syl 17 | . . . . . . . 8 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 23 | 16, 22 | mpbid 232 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 24 | 18 | adantr 480 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 25 | divides 16231 | . . . . . . 7 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) |
| 27 | 15, 26 | mpbird 257 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∥ 𝑁) |
| 28 | 27 | exp31 419 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑀 ∥ 𝑁 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 29 | 28 | com3r 87 | . . 3 ⊢ (𝑀 ∥ 𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 30 | 1, 29 | mpd 15 | . 2 ⊢ (𝑀 ∥ 𝑁 → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁)) |
| 31 | 30 | imp 406 | 1 ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 / cdiv 11842 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: dvdsdivcl 16293 fincygsubgodexd 20052 |
| Copyright terms: Public domain | W3C validator |