Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdszzq | Structured version Visualization version GIF version |
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.) |
Ref | Expression |
---|---|
dvdszzq.1 | ⊢ 𝑁 = (𝐴 / 𝐵) |
dvdszzq.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
dvdszzq.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdszzq.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
dvdszzq.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
dvdszzq.6 | ⊢ (𝜑 → 𝑃 ∥ 𝐴) |
dvdszzq.7 | ⊢ (𝜑 → ¬ 𝑃 ∥ 𝐵) |
Ref | Expression |
---|---|
dvdszzq | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszzq.2 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | dvdszzq.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | dvdszzq.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
4 | dvdszzq.6 | . . . 4 ⊢ (𝜑 → 𝑃 ∥ 𝐴) | |
5 | dvdszzq.1 | . . . . 5 ⊢ 𝑁 = (𝐴 / 𝐵) | |
6 | 2 | zcnd 12427 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
7 | 3 | zcnd 12427 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | dvdszrcl 15968 | . . . . . . . . 9 ⊢ (𝑃 ∥ 𝐴 → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) | |
9 | 8 | simprd 496 | . . . . . . . 8 ⊢ (𝑃 ∥ 𝐴 → 𝐴 ∈ ℤ) |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
11 | 10 | zcnd 12427 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | dvdszzq.5 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 0) | |
13 | 6, 7, 11, 12 | ldiv 11809 | . . . . 5 ⊢ (𝜑 → ((𝑁 · 𝐵) = 𝐴 ↔ 𝑁 = (𝐴 / 𝐵))) |
14 | 5, 13 | mpbiri 257 | . . . 4 ⊢ (𝜑 → (𝑁 · 𝐵) = 𝐴) |
15 | 4, 14 | breqtrrd 5102 | . . 3 ⊢ (𝜑 → 𝑃 ∥ (𝑁 · 𝐵)) |
16 | euclemma 16418 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 ∥ (𝑁 · 𝐵) ↔ (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵))) | |
17 | 16 | biimpa 477 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑃 ∥ (𝑁 · 𝐵)) → (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵)) |
18 | 1, 2, 3, 15, 17 | syl31anc 1372 | . 2 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵)) |
19 | dvdszzq.7 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ 𝐵) | |
20 | orcom 867 | . . 3 ⊢ ((𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵) ↔ (𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁)) | |
21 | df-or 845 | . . 3 ⊢ ((𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁)) | |
22 | 20, 21 | sylbb 218 | . 2 ⊢ ((𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵) → (¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁)) |
23 | 18, 19, 22 | sylc 65 | 1 ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 0cc0 10871 · cmul 10876 / cdiv 11632 ℤcz 12319 ∥ cdvds 15963 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 |
This theorem is referenced by: prmdvdsbc 31130 |
Copyright terms: Public domain | W3C validator |