![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdszzq | Structured version Visualization version GIF version |
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.) |
Ref | Expression |
---|---|
dvdszzq.1 | ⊢ 𝑁 = (𝐴 / 𝐵) |
dvdszzq.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
dvdszzq.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdszzq.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
dvdszzq.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
dvdszzq.6 | ⊢ (𝜑 → 𝑃 ∥ 𝐴) |
dvdszzq.7 | ⊢ (𝜑 → ¬ 𝑃 ∥ 𝐵) |
Ref | Expression |
---|---|
dvdszzq | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszzq.2 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | dvdszzq.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | dvdszzq.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
4 | dvdszzq.6 | . . . 4 ⊢ (𝜑 → 𝑃 ∥ 𝐴) | |
5 | dvdszzq.1 | . . . . 5 ⊢ 𝑁 = (𝐴 / 𝐵) | |
6 | 2 | zcnd 12721 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
7 | 3 | zcnd 12721 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | dvdszrcl 16292 | . . . . . . . . 9 ⊢ (𝑃 ∥ 𝐴 → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) | |
9 | 8 | simprd 495 | . . . . . . . 8 ⊢ (𝑃 ∥ 𝐴 → 𝐴 ∈ ℤ) |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
11 | 10 | zcnd 12721 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | dvdszzq.5 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 0) | |
13 | 6, 7, 11, 12 | ldiv 12099 | . . . . 5 ⊢ (𝜑 → ((𝑁 · 𝐵) = 𝐴 ↔ 𝑁 = (𝐴 / 𝐵))) |
14 | 5, 13 | mpbiri 258 | . . . 4 ⊢ (𝜑 → (𝑁 · 𝐵) = 𝐴) |
15 | 4, 14 | breqtrrd 5176 | . . 3 ⊢ (𝜑 → 𝑃 ∥ (𝑁 · 𝐵)) |
16 | euclemma 16747 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 ∥ (𝑁 · 𝐵) ↔ (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵))) | |
17 | 16 | biimpa 476 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑃 ∥ (𝑁 · 𝐵)) → (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵)) |
18 | 1, 2, 3, 15, 17 | syl31anc 1372 | . 2 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵)) |
19 | dvdszzq.7 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ 𝐵) | |
20 | orcom 870 | . . 3 ⊢ ((𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵) ↔ (𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁)) | |
21 | df-or 848 | . . 3 ⊢ ((𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁) ↔ (¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁)) | |
22 | 20, 21 | sylbb 219 | . 2 ⊢ ((𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵) → (¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁)) |
23 | 18, 19, 22 | sylc 65 | 1 ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 (class class class)co 7431 0cc0 11153 · cmul 11158 / cdiv 11918 ℤcz 12611 ∥ cdvds 16287 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 |
This theorem is referenced by: prmdvdsbc 16760 |
Copyright terms: Public domain | W3C validator |