MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszzq Structured version   Visualization version   GIF version

Theorem dvdszzq 16651
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Hypotheses
Ref Expression
dvdszzq.1 𝑁 = (𝐴 / 𝐵)
dvdszzq.2 (𝜑𝑃 ∈ ℙ)
dvdszzq.3 (𝜑𝑁 ∈ ℤ)
dvdszzq.4 (𝜑𝐵 ∈ ℤ)
dvdszzq.5 (𝜑𝐵 ≠ 0)
dvdszzq.6 (𝜑𝑃𝐴)
dvdszzq.7 (𝜑 → ¬ 𝑃𝐵)
Assertion
Ref Expression
dvdszzq (𝜑𝑃𝑁)

Proof of Theorem dvdszzq
StepHypRef Expression
1 dvdszzq.2 . . 3 (𝜑𝑃 ∈ ℙ)
2 dvdszzq.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 dvdszzq.4 . . 3 (𝜑𝐵 ∈ ℤ)
4 dvdszzq.6 . . . 4 (𝜑𝑃𝐴)
5 dvdszzq.1 . . . . 5 𝑁 = (𝐴 / 𝐵)
62zcnd 12600 . . . . . 6 (𝜑𝑁 ∈ ℂ)
73zcnd 12600 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 dvdszrcl 16187 . . . . . . . . 9 (𝑃𝐴 → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ))
98simprd 495 . . . . . . . 8 (𝑃𝐴𝐴 ∈ ℤ)
104, 9syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
1110zcnd 12600 . . . . . 6 (𝜑𝐴 ∈ ℂ)
12 dvdszzq.5 . . . . . 6 (𝜑𝐵 ≠ 0)
136, 7, 11, 12ldiv 11977 . . . . 5 (𝜑 → ((𝑁 · 𝐵) = 𝐴𝑁 = (𝐴 / 𝐵)))
145, 13mpbiri 258 . . . 4 (𝜑 → (𝑁 · 𝐵) = 𝐴)
154, 14breqtrrd 5123 . . 3 (𝜑𝑃 ∥ (𝑁 · 𝐵))
16 euclemma 16643 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 ∥ (𝑁 · 𝐵) ↔ (𝑃𝑁𝑃𝐵)))
1716biimpa 476 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑃 ∥ (𝑁 · 𝐵)) → (𝑃𝑁𝑃𝐵))
181, 2, 3, 15, 17syl31anc 1375 . 2 (𝜑 → (𝑃𝑁𝑃𝐵))
19 dvdszzq.7 . 2 (𝜑 → ¬ 𝑃𝐵)
20 orcom 870 . . 3 ((𝑃𝑁𝑃𝐵) ↔ (𝑃𝐵𝑃𝑁))
21 df-or 848 . . 3 ((𝑃𝐵𝑃𝑁) ↔ (¬ 𝑃𝐵𝑃𝑁))
2220, 21sylbb 219 . 2 ((𝑃𝑁𝑃𝐵) → (¬ 𝑃𝐵𝑃𝑁))
2318, 19, 22sylc 65 1 (𝜑𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  0cc0 11028   · cmul 11033   / cdiv 11796  cz 12490  cdvds 16182  cprime 16601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-gcd 16425  df-prm 16602
This theorem is referenced by:  prmdvdsbc  16656
  Copyright terms: Public domain W3C validator