MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszzq Structured version   Visualization version   GIF version

Theorem dvdszzq 16768
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Hypotheses
Ref Expression
dvdszzq.1 𝑁 = (𝐴 / 𝐵)
dvdszzq.2 (𝜑𝑃 ∈ ℙ)
dvdszzq.3 (𝜑𝑁 ∈ ℤ)
dvdszzq.4 (𝜑𝐵 ∈ ℤ)
dvdszzq.5 (𝜑𝐵 ≠ 0)
dvdszzq.6 (𝜑𝑃𝐴)
dvdszzq.7 (𝜑 → ¬ 𝑃𝐵)
Assertion
Ref Expression
dvdszzq (𝜑𝑃𝑁)

Proof of Theorem dvdszzq
StepHypRef Expression
1 dvdszzq.2 . . 3 (𝜑𝑃 ∈ ℙ)
2 dvdszzq.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 dvdszzq.4 . . 3 (𝜑𝐵 ∈ ℤ)
4 dvdszzq.6 . . . 4 (𝜑𝑃𝐴)
5 dvdszzq.1 . . . . 5 𝑁 = (𝐴 / 𝐵)
62zcnd 12748 . . . . . 6 (𝜑𝑁 ∈ ℂ)
73zcnd 12748 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 dvdszrcl 16307 . . . . . . . . 9 (𝑃𝐴 → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ))
98simprd 495 . . . . . . . 8 (𝑃𝐴𝐴 ∈ ℤ)
104, 9syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
1110zcnd 12748 . . . . . 6 (𝜑𝐴 ∈ ℂ)
12 dvdszzq.5 . . . . . 6 (𝜑𝐵 ≠ 0)
136, 7, 11, 12ldiv 12128 . . . . 5 (𝜑 → ((𝑁 · 𝐵) = 𝐴𝑁 = (𝐴 / 𝐵)))
145, 13mpbiri 258 . . . 4 (𝜑 → (𝑁 · 𝐵) = 𝐴)
154, 14breqtrrd 5194 . . 3 (𝜑𝑃 ∥ (𝑁 · 𝐵))
16 euclemma 16760 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 ∥ (𝑁 · 𝐵) ↔ (𝑃𝑁𝑃𝐵)))
1716biimpa 476 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑃 ∥ (𝑁 · 𝐵)) → (𝑃𝑁𝑃𝐵))
181, 2, 3, 15, 17syl31anc 1373 . 2 (𝜑 → (𝑃𝑁𝑃𝐵))
19 dvdszzq.7 . 2 (𝜑 → ¬ 𝑃𝐵)
20 orcom 869 . . 3 ((𝑃𝑁𝑃𝐵) ↔ (𝑃𝐵𝑃𝑁))
21 df-or 847 . . 3 ((𝑃𝐵𝑃𝑁) ↔ (¬ 𝑃𝐵𝑃𝑁))
2220, 21sylbb 219 . 2 ((𝑃𝑁𝑃𝐵) → (¬ 𝑃𝐵𝑃𝑁))
2318, 19, 22sylc 65 1 (𝜑𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  0cc0 11184   · cmul 11189   / cdiv 11947  cz 12639  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719
This theorem is referenced by:  prmdvdsbc  16773
  Copyright terms: Public domain W3C validator