MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszzq Structured version   Visualization version   GIF version

Theorem dvdszzq 16691
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
Hypotheses
Ref Expression
dvdszzq.1 𝑁 = (𝐴 / 𝐵)
dvdszzq.2 (𝜑𝑃 ∈ ℙ)
dvdszzq.3 (𝜑𝑁 ∈ ℤ)
dvdszzq.4 (𝜑𝐵 ∈ ℤ)
dvdszzq.5 (𝜑𝐵 ≠ 0)
dvdszzq.6 (𝜑𝑃𝐴)
dvdszzq.7 (𝜑 → ¬ 𝑃𝐵)
Assertion
Ref Expression
dvdszzq (𝜑𝑃𝑁)

Proof of Theorem dvdszzq
StepHypRef Expression
1 dvdszzq.2 . . 3 (𝜑𝑃 ∈ ℙ)
2 dvdszzq.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 dvdszzq.4 . . 3 (𝜑𝐵 ∈ ℤ)
4 dvdszzq.6 . . . 4 (𝜑𝑃𝐴)
5 dvdszzq.1 . . . . 5 𝑁 = (𝐴 / 𝐵)
62zcnd 12639 . . . . . 6 (𝜑𝑁 ∈ ℂ)
73zcnd 12639 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 dvdszrcl 16227 . . . . . . . . 9 (𝑃𝐴 → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ))
98simprd 495 . . . . . . . 8 (𝑃𝐴𝐴 ∈ ℤ)
104, 9syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
1110zcnd 12639 . . . . . 6 (𝜑𝐴 ∈ ℂ)
12 dvdszzq.5 . . . . . 6 (𝜑𝐵 ≠ 0)
136, 7, 11, 12ldiv 12016 . . . . 5 (𝜑 → ((𝑁 · 𝐵) = 𝐴𝑁 = (𝐴 / 𝐵)))
145, 13mpbiri 258 . . . 4 (𝜑 → (𝑁 · 𝐵) = 𝐴)
154, 14breqtrrd 5135 . . 3 (𝜑𝑃 ∥ (𝑁 · 𝐵))
16 euclemma 16683 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 ∥ (𝑁 · 𝐵) ↔ (𝑃𝑁𝑃𝐵)))
1716biimpa 476 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑃 ∥ (𝑁 · 𝐵)) → (𝑃𝑁𝑃𝐵))
181, 2, 3, 15, 17syl31anc 1375 . 2 (𝜑 → (𝑃𝑁𝑃𝐵))
19 dvdszzq.7 . 2 (𝜑 → ¬ 𝑃𝐵)
20 orcom 870 . . 3 ((𝑃𝑁𝑃𝐵) ↔ (𝑃𝐵𝑃𝑁))
21 df-or 848 . . 3 ((𝑃𝐵𝑃𝑁) ↔ (¬ 𝑃𝐵𝑃𝑁))
2220, 21sylbb 219 . 2 ((𝑃𝑁𝑃𝐵) → (¬ 𝑃𝐵𝑃𝑁))
2318, 19, 22sylc 65 1 (𝜑𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  0cc0 11068   · cmul 11073   / cdiv 11835  cz 12529  cdvds 16222  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642
This theorem is referenced by:  prmdvdsbc  16696
  Copyright terms: Public domain W3C validator