| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for disjdmqseq 38851, partim2 38853 and petlem 38858 via disjdmqs 38850, (general version of the former prtlem19 38925). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjlem19 | ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 38846 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) | |
| 2 | 1 | elvd 3442 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) |
| 3 | 2 | imp31 417 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 4 | elecALTV 38309 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) | |
| 5 | 4 | elvd 3442 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝑧 ∈ [𝐴] ≀ 𝑅)) |
| 8 | 7 | eqrdv 2729 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅) |
| 9 | 8 | exp31 419 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 dom cdm 5614 [cec 8620 ≀ ccoss 38223 Disj wdisjALTV 38257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-coss 38456 df-cnvrefrel 38572 df-disjALTV 38751 |
| This theorem is referenced by: disjdmqsss 38848 disjdmqscossss 38849 eldisjlem19 38856 |
| Copyright terms: Public domain | W3C validator |