| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for disjdmqseq 38783, partim2 38785 and petlem 38790 via disjdmqs 38782, (general version of the former prtlem19 38857). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjlem19 | ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 38778 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) | |
| 2 | 1 | elvd 3442 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) |
| 3 | 2 | imp31 417 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 4 | elecALTV 38241 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) | |
| 5 | 4 | elvd 3442 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝑧 ∈ [𝐴] ≀ 𝑅)) |
| 8 | 7 | eqrdv 2727 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅) |
| 9 | 8 | exp31 419 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 dom cdm 5619 [cec 8623 ≀ ccoss 38155 Disj wdisjALTV 38189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-coss 38388 df-cnvrefrel 38504 df-disjALTV 38683 |
| This theorem is referenced by: disjdmqsss 38780 disjdmqscossss 38781 eldisjlem19 38788 |
| Copyright terms: Public domain | W3C validator |