| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for disjdmqseq 38806, partim2 38808 and petlem 38813 via disjdmqs 38805, (general version of the former prtlem19 38879). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjlem19 | ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 38801 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) | |
| 2 | 1 | elvd 3486 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) |
| 3 | 2 | imp31 417 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 4 | elecALTV 38267 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) | |
| 5 | 4 | elvd 3486 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝑧 ∈ [𝐴] ≀ 𝑅)) |
| 8 | 7 | eqrdv 2735 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅) |
| 9 | 8 | exp31 419 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 dom cdm 5685 [cec 8743 ≀ ccoss 38182 Disj wdisjALTV 38216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 df-coss 38412 df-cnvrefrel 38528 df-disjALTV 38706 |
| This theorem is referenced by: disjdmqsss 38803 disjdmqscossss 38804 eldisjlem19 38811 |
| Copyright terms: Public domain | W3C validator |