![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem19 | Structured version Visualization version GIF version |
Description: Lemma for disjdmqseq 38786, partim2 38788 and petlem 38793 via disjdmqs 38785, (general version of the former prtlem19 38859). (Contributed by Peter Mazsa, 16-Sep-2021.) |
Ref | Expression |
---|---|
disjlem19 | ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjlem18 38781 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) | |
2 | 1 | elvd 3483 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) |
3 | 2 | imp31 417 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
4 | elecALTV 38247 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) | |
5 | 4 | elvd 3483 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝑧 ∈ [𝐴] ≀ 𝑅)) |
8 | 7 | eqrdv 2732 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅) |
9 | 8 | exp31 419 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 dom cdm 5688 [cec 8741 ≀ ccoss 38161 Disj wdisjALTV 38195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rmo 3377 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 df-coss 38392 df-cnvrefrel 38508 df-disjALTV 38686 |
This theorem is referenced by: disjdmqsss 38783 disjdmqscossss 38784 eldisjlem19 38791 |
Copyright terms: Public domain | W3C validator |