Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem19 Structured version   Visualization version   GIF version

Theorem disjlem19 38761
Description: Lemma for disjdmqseq 38765, partim2 38767 and petlem 38772 via disjdmqs 38764, (general version of the former prtlem19 38838). (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjlem19 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑉

Proof of Theorem disjlem19
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjlem18 38760 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
21elvd 3469 . . . . 5 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
32imp31 417 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))
4 elecALTV 38226 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
54elvd 3469 . . . . 5 (𝐴𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
65ad2antrr 726 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
73, 6bitr4d 282 . . 3 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝑧 ∈ [𝐴] ≀ 𝑅))
87eqrdv 2732 . 2 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)
98exp31 419 1 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463   class class class wbr 5123  dom cdm 5665  [cec 8725  ccoss 38141   Disj wdisjALTV 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-coss 38371  df-cnvrefrel 38487  df-disjALTV 38665
This theorem is referenced by:  disjdmqsss  38762  disjdmqscossss  38763  eldisjlem19  38770
  Copyright terms: Public domain W3C validator