Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem19 Structured version   Visualization version   GIF version

Theorem disjlem19 38757
Description: Lemma for disjdmqseq 38761, partim2 38763 and petlem 38768 via disjdmqs 38760, (general version of the former prtlem19 38834). (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjlem19 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑉

Proof of Theorem disjlem19
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjlem18 38756 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
21elvd 3494 . . . . 5 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
32imp31 417 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))
4 elecALTV 38222 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
54elvd 3494 . . . . 5 (𝐴𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
65ad2antrr 725 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
73, 6bitr4d 282 . . 3 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝑧 ∈ [𝐴] ≀ 𝑅))
87eqrdv 2738 . 2 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)
98exp31 419 1 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  dom cdm 5700  [cec 8761  ccoss 38135   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-coss 38367  df-cnvrefrel 38483  df-disjALTV 38661
This theorem is referenced by:  disjdmqsss  38758  disjdmqscossss  38759  eldisjlem19  38766
  Copyright terms: Public domain W3C validator