| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjlem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for disjdmqseq 38823, partim2 38825 and petlem 38830 via disjdmqs 38822, (general version of the former prtlem19 38896). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjlem19 | ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 38818 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) | |
| 2 | 1 | elvd 3465 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)))) |
| 3 | 2 | imp31 417 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 4 | elecALTV 38284 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) | |
| 5 | 4 | elvd 3465 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 6 | 5 | ad2antrr 726 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝑧)) |
| 7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅 ↔ 𝑧 ∈ [𝐴] ≀ 𝑅)) |
| 8 | 7 | eqrdv 2733 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅) |
| 9 | 8 | exp31 419 | 1 ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 [cec 8717 ≀ ccoss 38199 Disj wdisjALTV 38233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-coss 38429 df-cnvrefrel 38545 df-disjALTV 38723 |
| This theorem is referenced by: disjdmqsss 38820 disjdmqscossss 38821 eldisjlem19 38828 |
| Copyright terms: Public domain | W3C validator |