Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem19 Structured version   Visualization version   GIF version

Theorem disjlem19 38800
Description: Lemma for disjdmqseq 38804, partim2 38806 and petlem 38811 via disjdmqs 38803, (general version of the former prtlem19 38878). (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjlem19 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑉

Proof of Theorem disjlem19
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjlem18 38799 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
21elvd 3456 . . . . 5 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))))
32imp31 417 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝐴𝑅𝑧))
4 elecALTV 38262 . . . . . 6 ((𝐴𝑉𝑧 ∈ V) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
54elvd 3456 . . . . 5 (𝐴𝑉 → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
65ad2antrr 726 . . . 4 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝑧))
73, 6bitr4d 282 . . 3 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝑧 ∈ [𝑥]𝑅𝑧 ∈ [𝐴] ≀ 𝑅))
87eqrdv 2728 . 2 (((𝐴𝑉 ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)
98exp31 419 1 (𝐴𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  dom cdm 5641  [cec 8672  ccoss 38176   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  disjdmqsss  38801  disjdmqscossss  38802  eldisjlem19  38809
  Copyright terms: Public domain W3C validator