MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxcl Structured version   Visualization version   GIF version

Theorem pfxcl 14695
Description: Closure of the prefix extractor. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxcl (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word 𝐴)

Proof of Theorem pfxcl
Dummy variables 𝑥 𝑠 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2822 . 2 ((𝑆 prefix 𝐿) = ∅ → ((𝑆 prefix 𝐿) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴))
2 n0 4328 . . . 4 ((𝑆 prefix 𝐿) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆 prefix 𝐿))
3 df-pfx 14689 . . . . . 6 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
43elmpocl2 7650 . . . . 5 (𝑥 ∈ (𝑆 prefix 𝐿) → 𝐿 ∈ ℕ0)
54exlimiv 1930 . . . 4 (∃𝑥 𝑥 ∈ (𝑆 prefix 𝐿) → 𝐿 ∈ ℕ0)
62, 5sylbi 217 . . 3 ((𝑆 prefix 𝐿) ≠ ∅ → 𝐿 ∈ ℕ0)
7 pfxval 14691 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
8 swrdcl 14663 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, 𝐿⟩) ∈ Word 𝐴)
98adantr 480 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 substr ⟨0, 𝐿⟩) ∈ Word 𝐴)
107, 9eqeltrd 2834 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) ∈ Word 𝐴)
116, 10sylan2 593 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑆 prefix 𝐿) ≠ ∅) → (𝑆 prefix 𝐿) ∈ Word 𝐴)
12 wrd0 14557 . . 3 ∅ ∈ Word 𝐴
1312a1i 11 . 2 (𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴)
141, 11, 13pm2.61ne 3017 1 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2932  Vcvv 3459  c0 4308  cop 4607  (class class class)co 7405  0cc0 11129  0cn0 12501  Word cword 14531   substr csubstr 14658   prefix cpfx 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-substr 14659  df-pfx 14689
This theorem is referenced by:  pfxfvlsw  14713  pfxeq  14714  ccatpfx  14719  lenrevpfxcctswrd  14730  wrdind  14740  wrd2ind  14741  pfxccatin12  14751  splcl  14770  spllen  14772  splfv1  14773  splfv2a  14774  splval2  14775  repswpfx  14803  cshwcl  14816  cshwlen  14817  cshwidxmod  14821  pfx2  14966  gsumspl  18822  psgnunilem5  19475  efgsres  19719  efgredleme  19724  efgredlemc  19726  efgcpbllemb  19736  frgpuplem  19753  wwlksm1edg  29863  wwlksnred  29874  wwlksnextwrd  29879  clwlkclwwlk  29983  clwwlkinwwlk  30021  clwwlkf  30028  wwlksubclwwlk  30039  pfxlsw2ccat  32926  wrdt2ind  32929  splfv3  32934  pfxchn  32989  gsumwrd2dccatlem  33060  gsumwrd2dccat  33061  cycpmco2f1  33135  cycpmco2rn  33136  cycpmco2lem2  33138  cycpmco2lem3  33139  cycpmco2lem4  33140  cycpmco2lem5  33141  cycpmco2lem6  33142  cycpmco2  33144  elrgspnlem2  33238  1arithidomlem1  33550  signsvtn0  34602  signstfveq0  34609  revpfxsfxrev  35138  swrdrevpfx  35139  pfxwlk  35146  swrdwlk  35149
  Copyright terms: Public domain W3C validator