| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxcl | Structured version Visualization version GIF version | ||
| Description: Closure of the prefix extractor. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxcl | ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ ((𝑆 prefix 𝐿) = ∅ → ((𝑆 prefix 𝐿) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴)) | |
| 2 | n0 4319 | . . . 4 ⊢ ((𝑆 prefix 𝐿) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆 prefix 𝐿)) | |
| 3 | df-pfx 14643 | . . . . . 6 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
| 4 | 3 | elmpocl2 7635 | . . . . 5 ⊢ (𝑥 ∈ (𝑆 prefix 𝐿) → 𝐿 ∈ ℕ0) |
| 5 | 4 | exlimiv 1930 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ (𝑆 prefix 𝐿) → 𝐿 ∈ ℕ0) |
| 6 | 2, 5 | sylbi 217 | . . 3 ⊢ ((𝑆 prefix 𝐿) ≠ ∅ → 𝐿 ∈ ℕ0) |
| 7 | pfxval 14645 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) | |
| 8 | swrdcl 14617 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈0, 𝐿〉) ∈ Word 𝐴) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) ∈ Word 𝐴) |
| 10 | 7, 9 | eqeltrd 2829 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) ∈ Word 𝐴) |
| 11 | 6, 10 | sylan2 593 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑆 prefix 𝐿) ≠ ∅) → (𝑆 prefix 𝐿) ∈ Word 𝐴) |
| 12 | wrd0 14511 | . . 3 ⊢ ∅ ∈ Word 𝐴 | |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴) |
| 14 | 1, 11, 13 | pm2.61ne 3011 | 1 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 (class class class)co 7390 0cc0 11075 ℕ0cn0 12449 Word cword 14485 substr csubstr 14612 prefix cpfx 14642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-substr 14613 df-pfx 14643 |
| This theorem is referenced by: pfxfvlsw 14667 pfxeq 14668 ccatpfx 14673 lenrevpfxcctswrd 14684 wrdind 14694 wrd2ind 14695 pfxccatin12 14705 splcl 14724 spllen 14726 splfv1 14727 splfv2a 14728 splval2 14729 repswpfx 14757 cshwcl 14770 cshwlen 14771 cshwidxmod 14775 pfx2 14920 gsumspl 18778 psgnunilem5 19431 efgsres 19675 efgredleme 19680 efgredlemc 19682 efgcpbllemb 19692 frgpuplem 19709 wwlksm1edg 29818 wwlksnred 29829 wwlksnextwrd 29834 clwlkclwwlk 29938 clwwlkinwwlk 29976 clwwlkf 29983 wwlksubclwwlk 29994 pfxlsw2ccat 32879 wrdt2ind 32882 splfv3 32887 pfxchn 32942 gsumwrd2dccatlem 33013 gsumwrd2dccat 33014 cycpmco2f1 33088 cycpmco2rn 33089 cycpmco2lem2 33091 cycpmco2lem3 33092 cycpmco2lem4 33093 cycpmco2lem5 33094 cycpmco2lem6 33095 cycpmco2 33097 elrgspnlem2 33201 1arithidomlem1 33513 signsvtn0 34568 signstfveq0 34575 revpfxsfxrev 35110 swrdrevpfx 35111 pfxwlk 35118 swrdwlk 35121 |
| Copyright terms: Public domain | W3C validator |