Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafveqfv Structured version   Visualization version   GIF version

Theorem elsetpreimafveqfv 47429
Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafveqfv ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑋𝑆𝑌𝑆)) → (𝐹𝑋) = (𝐹𝑌))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafveqfv
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvbi 47428 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
3 simpr 484 . . . . 5 ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → (𝐹𝑌) = (𝐹𝑋))
43eqcomd 2737 . . . 4 ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → (𝐹𝑋) = (𝐹𝑌))
52, 4biimtrdi 253 . . 3 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 → (𝐹𝑋) = (𝐹𝑌)))
653exp 1119 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 → (𝐹𝑋) = (𝐹𝑌)))))
763imp2 1350 1 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑋𝑆𝑌𝑆)) → (𝐹𝑋) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {csn 4576  ccnv 5615  cima 5619   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  imasetpreimafvbijlemfv  47439
  Copyright terms: Public domain W3C validator