Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafveqfv | Structured version Visualization version GIF version |
Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
elsetpreimafveqfv | ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafvbi 44731 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑌) = (𝐹‘𝑋)) | |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
5 | 2, 4 | syl6bi 252 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))) |
6 | 5 | 3exp 1117 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))))) |
7 | 6 | 3imp2 1347 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: imasetpreimafvbijlemfv 44742 |
Copyright terms: Public domain | W3C validator |