|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafveqfv | Structured version Visualization version GIF version | ||
| Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) | 
| Ref | Expression | 
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | 
| Ref | Expression | 
|---|---|
| elsetpreimafveqfv | ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafvbi 47378 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) | 
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑌) = (𝐹‘𝑋)) | |
| 4 | 3 | eqcomd 2743 | . . . 4 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | 
| 5 | 2, 4 | biimtrdi 253 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))) | 
| 6 | 5 | 3exp 1120 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))))) | 
| 7 | 6 | 3imp2 1350 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 {csn 4626 ◡ccnv 5684 “ cima 5688 Fn wfn 6556 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 | 
| This theorem is referenced by: imasetpreimafvbijlemfv 47389 | 
| Copyright terms: Public domain | W3C validator |