Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafveqfv Structured version   Visualization version   GIF version

Theorem elsetpreimafveqfv 47377
Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafveqfv ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑋𝑆𝑌𝑆)) → (𝐹𝑋) = (𝐹𝑌))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafveqfv
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvbi 47376 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
3 simpr 484 . . . . 5 ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → (𝐹𝑌) = (𝐹𝑋))
43eqcomd 2735 . . . 4 ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → (𝐹𝑋) = (𝐹𝑌))
52, 4biimtrdi 253 . . 3 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 → (𝐹𝑋) = (𝐹𝑌)))
653exp 1119 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 → (𝐹𝑋) = (𝐹𝑌)))))
763imp2 1350 1 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑋𝑆𝑌𝑆)) → (𝐹𝑋) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4579  ccnv 5622  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  imasetpreimafvbijlemfv  47387
  Copyright terms: Public domain W3C validator