| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafveqfv | Structured version Visualization version GIF version | ||
| Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| elsetpreimafveqfv | ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafvbi 47405 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑌) = (𝐹‘𝑋)) | |
| 4 | 3 | eqcomd 2741 | . . . 4 ⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| 5 | 2, 4 | biimtrdi 253 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))) |
| 6 | 5 | 3exp 1119 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 → (𝐹‘𝑋) = (𝐹‘𝑌))))) |
| 7 | 6 | 3imp2 1350 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 {csn 4601 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: imasetpreimafvbijlemfv 47416 |
| Copyright terms: Public domain | W3C validator |