| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winafp | Structured version Visualization version GIF version | ||
| Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winafp | ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winalim2 10587 | . 2 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | |
| 2 | vex 3440 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 3 | limelon 6371 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) | |
| 4 | 2, 3 | mpan 690 | . . . . . . . 8 ⊢ (Lim 𝑥 → 𝑥 ∈ On) |
| 5 | alephle 9979 | . . . . . . . 8 ⊢ (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (Lim 𝑥 → 𝑥 ⊆ (ℵ‘𝑥)) |
| 7 | 6 | ad2antll 729 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥)) |
| 8 | simprl 770 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴) | |
| 9 | 7, 8 | sseqtrd 3966 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ 𝐴) |
| 10 | 8 | fveq2d 6826 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴)) |
| 11 | alephsing 10167 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) | |
| 12 | 11 | ad2antll 729 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) |
| 13 | 10, 12 | eqtr3d 2768 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥)) |
| 14 | elwina 10577 | . . . . . . . . 9 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑦 ≺ 𝑧)) | |
| 15 | 14 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴) |
| 16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴) |
| 17 | 13, 16 | eqtr3d 2768 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴) |
| 18 | cfle 10145 | . . . . . 6 ⊢ (cf‘𝑥) ⊆ 𝑥 | |
| 19 | 17, 18 | eqsstrrdi 3975 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴 ⊆ 𝑥) |
| 20 | 9, 19 | eqssd 3947 | . . . 4 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴) |
| 21 | 20 | fveq2d 6826 | . . 3 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴)) |
| 22 | 21, 8 | eqtr3d 2768 | . 2 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴) |
| 23 | 1, 22 | exlimddv 1936 | 1 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 Oncon0 6306 Lim wlim 6307 ‘cfv 6481 ωcom 7796 ≺ csdm 8868 ℵcale 9829 cfccf 9830 Inaccwcwina 10573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-card 9832 df-aleph 9833 df-cf 9834 df-acn 9835 df-wina 10575 |
| This theorem is referenced by: winafpi 10589 |
| Copyright terms: Public domain | W3C validator |