Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > winafp | Structured version Visualization version GIF version |
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winafp | ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | winalim2 10383 | . 2 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | |
2 | vex 3426 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | limelon 6314 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) | |
4 | 2, 3 | mpan 686 | . . . . . . . 8 ⊢ (Lim 𝑥 → 𝑥 ∈ On) |
5 | alephle 9775 | . . . . . . . 8 ⊢ (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (Lim 𝑥 → 𝑥 ⊆ (ℵ‘𝑥)) |
7 | 6 | ad2antll 725 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥)) |
8 | simprl 767 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴) | |
9 | 7, 8 | sseqtrd 3957 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ 𝐴) |
10 | 8 | fveq2d 6760 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴)) |
11 | alephsing 9963 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) | |
12 | 11 | ad2antll 725 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) |
13 | 10, 12 | eqtr3d 2780 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥)) |
14 | elwina 10373 | . . . . . . . . 9 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑦 ≺ 𝑧)) | |
15 | 14 | simp2bi 1144 | . . . . . . . 8 ⊢ (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴) |
16 | 15 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴) |
17 | 13, 16 | eqtr3d 2780 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴) |
18 | cfle 9941 | . . . . . 6 ⊢ (cf‘𝑥) ⊆ 𝑥 | |
19 | 17, 18 | eqsstrrdi 3972 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴 ⊆ 𝑥) |
20 | 9, 19 | eqssd 3934 | . . . 4 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴) |
21 | 20 | fveq2d 6760 | . . 3 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴)) |
22 | 21, 8 | eqtr3d 2780 | . 2 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴) |
23 | 1, 22 | exlimddv 1939 | 1 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Oncon0 6251 Lim wlim 6252 ‘cfv 6418 ωcom 7687 ≺ csdm 8690 ℵcale 9625 cfccf 9626 Inaccwcwina 10369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-smo 8148 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-har 9246 df-card 9628 df-aleph 9629 df-cf 9630 df-acn 9631 df-wina 10371 |
This theorem is referenced by: winafpi 10385 |
Copyright terms: Public domain | W3C validator |