![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winafp | Structured version Visualization version GIF version |
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winafp | ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | winalim2 10733 | . 2 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | |
2 | vex 3481 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | limelon 6449 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) | |
4 | 2, 3 | mpan 690 | . . . . . . . 8 ⊢ (Lim 𝑥 → 𝑥 ∈ On) |
5 | alephle 10125 | . . . . . . . 8 ⊢ (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (Lim 𝑥 → 𝑥 ⊆ (ℵ‘𝑥)) |
7 | 6 | ad2antll 729 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥)) |
8 | simprl 771 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴) | |
9 | 7, 8 | sseqtrd 4035 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ 𝐴) |
10 | 8 | fveq2d 6910 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴)) |
11 | alephsing 10313 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) | |
12 | 11 | ad2antll 729 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) |
13 | 10, 12 | eqtr3d 2776 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥)) |
14 | elwina 10723 | . . . . . . . . 9 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑦 ≺ 𝑧)) | |
15 | 14 | simp2bi 1145 | . . . . . . . 8 ⊢ (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴) |
16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴) |
17 | 13, 16 | eqtr3d 2776 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴) |
18 | cfle 10291 | . . . . . 6 ⊢ (cf‘𝑥) ⊆ 𝑥 | |
19 | 17, 18 | eqsstrrdi 4050 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴 ⊆ 𝑥) |
20 | 9, 19 | eqssd 4012 | . . . 4 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴) |
21 | 20 | fveq2d 6910 | . . 3 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴)) |
22 | 21, 8 | eqtr3d 2776 | . 2 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴) |
23 | 1, 22 | exlimddv 1932 | 1 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 Vcvv 3477 ⊆ wss 3962 ∅c0 4338 class class class wbr 5147 Oncon0 6385 Lim wlim 6386 ‘cfv 6562 ωcom 7886 ≺ csdm 8982 ℵcale 9973 cfccf 9974 Inaccwcwina 10719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-smo 8384 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-oi 9547 df-har 9594 df-card 9976 df-aleph 9977 df-cf 9978 df-acn 9979 df-wina 10721 |
This theorem is referenced by: winafpi 10735 |
Copyright terms: Public domain | W3C validator |