MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winafp Structured version   Visualization version   GIF version

Theorem winafp 10728
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winafp ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)

Proof of Theorem winafp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winalim2 10727 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
2 vex 3477 . . . . . . . . 9 𝑥 ∈ V
3 limelon 6438 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
42, 3mpan 688 . . . . . . . 8 (Lim 𝑥𝑥 ∈ On)
5 alephle 10119 . . . . . . . 8 (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥))
64, 5syl 17 . . . . . . 7 (Lim 𝑥𝑥 ⊆ (ℵ‘𝑥))
76ad2antll 727 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥))
8 simprl 769 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴)
97, 8sseqtrd 4022 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥𝐴)
108fveq2d 6906 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴))
11 alephsing 10307 . . . . . . . . 9 (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1211ad2antll 727 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1310, 12eqtr3d 2770 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥))
14 elwina 10717 . . . . . . . . 9 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦𝐴𝑧𝐴 𝑦𝑧))
1514simp2bi 1143 . . . . . . . 8 (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴)
1615ad2antrr 724 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴)
1713, 16eqtr3d 2770 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴)
18 cfle 10285 . . . . . 6 (cf‘𝑥) ⊆ 𝑥
1917, 18eqsstrrdi 4037 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴𝑥)
209, 19eqssd 3999 . . . 4 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴)
2120fveq2d 6906 . . 3 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴))
2221, 8eqtr3d 2770 . 2 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴)
231, 22exlimddv 1930 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  Vcvv 3473  wss 3949  c0 4326   class class class wbr 5152  Oncon0 6374  Lim wlim 6375  cfv 6553  ωcom 7876  csdm 8969  cale 9967  cfccf 9968  Inaccwcwina 10713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-smo 8373  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-oi 9541  df-har 9588  df-card 9970  df-aleph 9971  df-cf 9972  df-acn 9973  df-wina 10715
This theorem is referenced by:  winafpi  10729
  Copyright terms: Public domain W3C validator