Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  winafp Structured version   Visualization version   GIF version

Theorem winafp 10157
 Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winafp ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)

Proof of Theorem winafp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winalim2 10156 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
2 vex 3413 . . . . . . . . 9 𝑥 ∈ V
3 limelon 6232 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
42, 3mpan 689 . . . . . . . 8 (Lim 𝑥𝑥 ∈ On)
5 alephle 9548 . . . . . . . 8 (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥))
64, 5syl 17 . . . . . . 7 (Lim 𝑥𝑥 ⊆ (ℵ‘𝑥))
76ad2antll 728 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥))
8 simprl 770 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴)
97, 8sseqtrd 3932 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥𝐴)
108fveq2d 6662 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴))
11 alephsing 9736 . . . . . . . . 9 (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1211ad2antll 728 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1310, 12eqtr3d 2795 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥))
14 elwina 10146 . . . . . . . . 9 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦𝐴𝑧𝐴 𝑦𝑧))
1514simp2bi 1143 . . . . . . . 8 (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴)
1615ad2antrr 725 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴)
1713, 16eqtr3d 2795 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴)
18 cfle 9714 . . . . . 6 (cf‘𝑥) ⊆ 𝑥
1917, 18eqsstrrdi 3947 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴𝑥)
209, 19eqssd 3909 . . . 4 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴)
2120fveq2d 6662 . . 3 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴))
2221, 8eqtr3d 2795 . 2 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴)
231, 22exlimddv 1936 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ⊆ wss 3858  ∅c0 4225   class class class wbr 5032  Oncon0 6169  Lim wlim 6170  ‘cfv 6335  ωcom 7579   ≺ csdm 8526  ℵcale 9398  cfccf 9399  Inaccwcwina 10142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-smo 7993  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-oi 9007  df-har 9054  df-card 9401  df-aleph 9402  df-cf 9403  df-acn 9404  df-wina 10144 This theorem is referenced by:  winafpi  10158
 Copyright terms: Public domain W3C validator