| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winafp | Structured version Visualization version GIF version | ||
| Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winafp | ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winalim2 10590 | . 2 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | |
| 2 | vex 3440 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 3 | limelon 6372 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) | |
| 4 | 2, 3 | mpan 690 | . . . . . . . 8 ⊢ (Lim 𝑥 → 𝑥 ∈ On) |
| 5 | alephle 9982 | . . . . . . . 8 ⊢ (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (Lim 𝑥 → 𝑥 ⊆ (ℵ‘𝑥)) |
| 7 | 6 | ad2antll 729 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥)) |
| 8 | simprl 770 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴) | |
| 9 | 7, 8 | sseqtrd 3972 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ 𝐴) |
| 10 | 8 | fveq2d 6826 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴)) |
| 11 | alephsing 10170 | . . . . . . . . 9 ⊢ (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) | |
| 12 | 11 | ad2antll 729 | . . . . . . . 8 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥)) |
| 13 | 10, 12 | eqtr3d 2766 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥)) |
| 14 | elwina 10580 | . . . . . . . . 9 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐴 𝑦 ≺ 𝑧)) | |
| 15 | 14 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴) |
| 16 | 15 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴) |
| 17 | 13, 16 | eqtr3d 2766 | . . . . . 6 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴) |
| 18 | cfle 10148 | . . . . . 6 ⊢ (cf‘𝑥) ⊆ 𝑥 | |
| 19 | 17, 18 | eqsstrrdi 3981 | . . . . 5 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴 ⊆ 𝑥) |
| 20 | 9, 19 | eqssd 3953 | . . . 4 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴) |
| 21 | 20 | fveq2d 6826 | . . 3 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴)) |
| 22 | 21, 8 | eqtr3d 2766 | . 2 ⊢ (((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴) |
| 23 | 1, 22 | exlimddv 1935 | 1 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 Oncon0 6307 Lim wlim 6308 ‘cfv 6482 ωcom 7799 ≺ csdm 8871 ℵcale 9832 cfccf 9833 Inaccwcwina 10576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-smo 8269 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-card 9835 df-aleph 9836 df-cf 9837 df-acn 9838 df-wina 10578 |
| This theorem is referenced by: winafpi 10592 |
| Copyright terms: Public domain | W3C validator |