MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winacard Structured version   Visualization version   GIF version

Theorem winacard 10651
Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winacard (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)

Proof of Theorem winacard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elwina 10645 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
2 cardcf 10211 . . . 4 (card‘(cf‘𝐴)) = (cf‘𝐴)
3 fveq2 6860 . . . 4 ((cf‘𝐴) = 𝐴 → (card‘(cf‘𝐴)) = (card‘𝐴))
4 id 22 . . . 4 ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)
52, 3, 43eqtr3a 2789 . . 3 ((cf‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
653ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (card‘𝐴) = 𝐴)
71, 6sylbi 217 1 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  c0 4298   class class class wbr 5109  cfv 6513  csdm 8919  cardccrd 9894  cfccf 9896  Inaccwcwina 10641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-er 8673  df-en 8921  df-card 9898  df-cf 9900  df-wina 10643
This theorem is referenced by:  winalim  10654  winalim2  10655  gchina  10658  inar1  10734
  Copyright terms: Public domain W3C validator