MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winacard Structured version   Visualization version   GIF version

Theorem winacard 10580
Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winacard (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)

Proof of Theorem winacard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elwina 10574 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
2 cardcf 10140 . . . 4 (card‘(cf‘𝐴)) = (cf‘𝐴)
3 fveq2 6822 . . . 4 ((cf‘𝐴) = 𝐴 → (card‘(cf‘𝐴)) = (card‘𝐴))
4 id 22 . . . 4 ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)
52, 3, 43eqtr3a 2790 . . 3 ((cf‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
653ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (card‘𝐴) = 𝐴)
71, 6sylbi 217 1 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4283   class class class wbr 5091  cfv 6481  csdm 8868  cardccrd 9825  cfccf 9827  Inaccwcwina 10570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-card 9829  df-cf 9831  df-wina 10572
This theorem is referenced by:  winalim  10583  winalim2  10584  gchina  10587  inar1  10663
  Copyright terms: Public domain W3C validator