MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winacard Structured version   Visualization version   GIF version

Theorem winacard 10761
Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winacard (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)

Proof of Theorem winacard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elwina 10755 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
2 cardcf 10321 . . . 4 (card‘(cf‘𝐴)) = (cf‘𝐴)
3 fveq2 6920 . . . 4 ((cf‘𝐴) = 𝐴 → (card‘(cf‘𝐴)) = (card‘𝐴))
4 id 22 . . . 4 ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)
52, 3, 43eqtr3a 2804 . . 3 ((cf‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴)
653ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (card‘𝐴) = 𝐴)
71, 6sylbi 217 1 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352   class class class wbr 5166  cfv 6573  csdm 9002  cardccrd 10004  cfccf 10006  Inaccwcwina 10751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-card 10008  df-cf 10010  df-wina 10753
This theorem is referenced by:  winalim  10764  winalim2  10765  gchina  10768  inar1  10844
  Copyright terms: Public domain W3C validator