MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainf Structured version   Visualization version   GIF version

Theorem winainf 10688
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainf (𝐴 ∈ Inaccw → ω ⊆ 𝐴)

Proof of Theorem winainf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elwina 10680 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
2 cfon 10249 . . . 4 (cf‘𝐴) ∈ On
3 eleq1 2821 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On))
42, 3mpbii 232 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ On)
5 winainflem 10687 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
64, 5syl3an2 1164 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
71, 6sylbi 216 1 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3948  c0 4322   class class class wbr 5148  Oncon0 6364  cfv 6543  ωcom 7854  csdm 8937  cfccf 9931  Inaccwcwina 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-card 9933  df-cf 9935  df-wina 10678
This theorem is referenced by:  winalim  10689  winalim2  10690  gchina  10693  inar1  10769
  Copyright terms: Public domain W3C validator