![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winaon | Structured version Visualization version GIF version |
Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winaon | ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwina 10717 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
2 | cfon 10286 | . . . 4 ⊢ (cf‘𝐴) ∈ On | |
3 | eleq1 2817 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ On) |
5 | 4 | 3ad2ant2 1131 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ On) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∅c0 4326 class class class wbr 5152 Oncon0 6374 ‘cfv 6553 ≺ csdm 8969 cfccf 9968 Inaccwcwina 10713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-er 8731 df-en 8971 df-card 9970 df-cf 9972 df-wina 10715 |
This theorem is referenced by: inar1 10806 inatsk 10809 grur1a 10850 grur1 10851 inaprc 10867 inaex 43765 gruex 43766 |
Copyright terms: Public domain | W3C validator |