Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > winaon | Structured version Visualization version GIF version |
Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winaon | ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwina 10186 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
2 | cfon 9755 | . . . 4 ⊢ (cf‘𝐴) ∈ On | |
3 | eleq1 2820 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
4 | 2, 3 | mpbii 236 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ On) |
5 | 4 | 3ad2ant2 1135 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ On) |
6 | 1, 5 | sylbi 220 | 1 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 ∅c0 4211 class class class wbr 5030 Oncon0 6172 ‘cfv 6339 ≺ csdm 8554 cfccf 9439 Inaccwcwina 10182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-card 9441 df-cf 9443 df-wina 10184 |
This theorem is referenced by: inar1 10275 inatsk 10278 grur1a 10319 grur1 10320 inaprc 10336 inaex 41457 gruex 41458 |
Copyright terms: Public domain | W3C validator |