Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∨ w3o 1086
= wceq 1541 ∈
wcel 2106 ℝcr 11108
0cc0 11109 -cneg 11444
ℕcn 12211 ℤcz 12557 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 df-nn 12212 df-z 12558 |
This theorem is referenced by: znegclb
12598 nn0negz
12599 zsubcl
12603 zeo
12647 zindd
12662 znegcld
12667 zriotaneg
12674 uzneg
12841 zmax
12928 rebtwnz
12930 qnegcl
12949 fzsubel
13536 fzosubel
13690 ceilid
13815 modcyc2
13871 expsub
14075 seqshft
15031 climshft
15519 negdvdsb
16215 dvdsnegb
16216 summodnegmod
16229 dvdssub
16246 odd2np1
16283 divalglem6
16340 bitscmp
16378 gcdneg
16462 neggcd
16463 gcdaddmlem
16464 gcdabsOLD
16472 lcmneg
16539 neglcm
16540 lcmabs
16541 mulgaddcomlem
18976 mulgneg2
18987 mulgsubdir
18993 cycsubgcl
19082 zaddablx
19739 cyggeninv
19750 zsubrg
20997 zringsub
21024 zringmulg
21025 zringinvg
21034 aaliou3lem9
25862 sinperlem
25989 wilthlem3
26571 basellem3
26584 basellem4
26585 basellem8
26589 basellem9
26590 lgsneg
26821 lgsdir2lem4
26828 lgsdir2lem5
26829 ex-fl
29697 ex-mod
29699 pell1234qrdich
41589 rmxyneg
41649 monotoddzzfi
41671 monotoddzz
41672 oddcomabszz
41673 jm2.24
41692 acongtr
41707 fzneg
41711 jm2.26a
41729 cosknegpi
44575 enege
46303 onego
46304 0nodd
46570 pzriprnglem4
46798 2zrngagrp
46831 zlmodzxzequap
47170 flsubz
47193 digvalnn0
47275 dig0
47282 dig2nn0
47287 |