| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12470 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 11352 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 11407 | . . . . 5 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 12479 | . . . 4 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2839 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 12471 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 12489 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ℝcr 11005 0cc0 11006 -cneg 11345 ℕcn 12125 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-nn 12126 df-z 12469 |
| This theorem is referenced by: znegclb 12509 nn0negz 12510 zsubcl 12514 zeo 12559 zindd 12574 znegcld 12579 zriotaneg 12586 uzneg 12752 zmax 12843 rebtwnz 12845 qnegcl 12864 fzsubel 13460 fzosubel 13624 ceilid 13755 modcyc2 13811 expsub 14017 seqshft 14992 climshft 15483 negdvdsb 16183 dvdsnegb 16184 summodnegmod 16197 difmod0 16198 dvdssub 16215 odd2np1 16252 divalglem6 16309 bitscmp 16349 gcdneg 16433 neggcd 16434 gcdaddmlem 16435 lcmneg 16514 neglcm 16515 lcmabs 16516 mulgaddcomlem 19010 mulgneg2 19021 mulgsubdir 19027 cycsubgcl 19118 zaddablx 19784 cyggeninv 19795 zsubrg 21357 zringsub 21392 zringmulg 21393 zringinvg 21402 pzriprnglem4 21421 aaliou3lem9 26285 sinperlem 26416 wilthlem3 27007 basellem3 27020 basellem4 27021 basellem8 27025 basellem9 27026 lgsneg 27259 lgsdir2lem4 27266 lgsdir2lem5 27267 ex-fl 30427 ex-mod 30429 pell1234qrdich 42964 rmxyneg 43023 monotoddzzfi 43045 monotoddzz 43046 oddcomabszz 43047 jm2.24 43066 acongtr 43081 fzneg 43085 jm2.26a 43103 cosknegpi 45977 nthrucw 46994 ceilbi 47443 enege 47755 onego 47756 0nodd 48280 2zrngagrp 48359 zlmodzxzequap 48610 flsubz 48633 digvalnn0 48710 dig0 48717 dig2nn0 48722 |
| Copyright terms: Public domain | W3C validator |