![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12613 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 11498 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 11553 | . . . . 5 ⊢ -0 = 0 | |
4 | 2, 3 | eqtrdi 2791 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 12622 | . . . 4 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | eqeltrdi 2847 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 12614 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 12632 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1427 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 ℝcr 11152 0cc0 11153 -cneg 11491 ℕcn 12264 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 df-nn 12265 df-z 12612 |
This theorem is referenced by: znegclb 12652 nn0negz 12653 zsubcl 12657 zeo 12702 zindd 12717 znegcld 12722 zriotaneg 12729 uzneg 12896 zmax 12985 rebtwnz 12987 qnegcl 13006 fzsubel 13597 fzosubel 13760 ceilid 13888 modcyc2 13944 expsub 14148 seqshft 15121 climshft 15609 negdvdsb 16307 dvdsnegb 16308 summodnegmod 16321 dvdssub 16338 odd2np1 16375 divalglem6 16432 bitscmp 16472 gcdneg 16556 neggcd 16557 gcdaddmlem 16558 lcmneg 16637 neglcm 16638 lcmabs 16639 mulgaddcomlem 19128 mulgneg2 19139 mulgsubdir 19145 cycsubgcl 19237 zaddablx 19905 cyggeninv 19916 zsubrg 21456 zringsub 21484 zringmulg 21485 zringinvg 21494 pzriprnglem4 21513 aaliou3lem9 26407 sinperlem 26537 wilthlem3 27128 basellem3 27141 basellem4 27142 basellem8 27146 basellem9 27147 lgsneg 27380 lgsdir2lem4 27387 lgsdir2lem5 27388 ex-fl 30476 ex-mod 30478 pell1234qrdich 42849 rmxyneg 42909 monotoddzzfi 42931 monotoddzz 42932 oddcomabszz 42933 jm2.24 42952 acongtr 42967 fzneg 42971 jm2.26a 42989 cosknegpi 45825 enege 47570 onego 47571 0nodd 48014 2zrngagrp 48093 zlmodzxzequap 48345 flsubz 48368 digvalnn0 48449 dig0 48456 dig2nn0 48461 |
Copyright terms: Public domain | W3C validator |