![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 11730 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 10614 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 10669 | . . . . 5 ⊢ -0 = 0 | |
4 | 2, 3 | syl6eq 2830 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 11739 | . . . 4 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | syl6eqel 2867 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 11731 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 11751 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1501 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 1, 9 | simplbiim 500 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1070 = wceq 1601 ∈ wcel 2107 ℝcr 10271 0cc0 10272 -cneg 10607 ℕcn 11374 ℤcz 11728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-nn 11375 df-z 11729 |
This theorem is referenced by: znegclb 11766 nn0negz 11767 zsubcl 11771 zeo 11815 zindd 11830 znegcld 11836 zriotaneg 11843 uzneg 12011 zmax 12092 rebtwnz 12094 qnegcl 12113 fzsubel 12694 fzosubel 12846 ceilid 12969 modcyc2 13025 expsub 13226 seqshft 14232 climshft 14715 znnenlemOLD 15344 negdvdsb 15405 dvdsnegb 15406 summodnegmod 15419 dvdssub 15433 odd2np1 15469 divalglem6 15528 bitscmp 15566 gcdneg 15649 neggcd 15650 gcdaddmlem 15651 gcdabs 15656 lcmneg 15722 neglcm 15723 lcmabs 15724 mulgaddcomlem 17949 mulgneg2 17960 mulgsubdir 17966 cycsubgcl 18004 zaddablx 18661 cyggeninv 18671 zsubrg 20195 zringmulg 20222 zringinvg 20231 aaliou3lem9 24542 sinperlem 24670 wilthlem3 25248 basellem3 25261 basellem4 25262 basellem8 25266 basellem9 25267 lgsneg 25498 lgsdir2lem4 25505 lgsdir2lem5 25506 ex-fl 27879 ex-mod 27881 pell1234qrdich 38389 rmxyneg 38448 monotoddzzfi 38470 monotoddzz 38471 oddcomabszz 38472 jm2.24 38493 acongtr 38508 fzneg 38512 jm2.26a 38530 cosknegpi 41012 enege 42587 onego 42588 0nodd 42829 2zrngagrp 42962 zlmodzxzequap 43307 flsubz 43331 digvalnn0 43412 dig0 43419 dig2nn0 43424 |
Copyright terms: Public domain | W3C validator |