| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12473 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 11355 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 11410 | . . . . 5 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 12482 | . . . 4 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 12474 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 12492 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℝcr 11008 0cc0 11009 -cneg 11348 ℕcn 12128 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-nn 12129 df-z 12472 |
| This theorem is referenced by: znegclb 12512 nn0negz 12513 zsubcl 12517 zeo 12562 zindd 12577 znegcld 12582 zriotaneg 12589 uzneg 12755 zmax 12846 rebtwnz 12848 qnegcl 12867 fzsubel 13463 fzosubel 13627 ceilid 13755 modcyc2 13811 expsub 14017 seqshft 14992 climshft 15483 negdvdsb 16183 dvdsnegb 16184 summodnegmod 16197 difmod0 16198 dvdssub 16215 odd2np1 16252 divalglem6 16309 bitscmp 16349 gcdneg 16433 neggcd 16434 gcdaddmlem 16435 lcmneg 16514 neglcm 16515 lcmabs 16516 mulgaddcomlem 18976 mulgneg2 18987 mulgsubdir 18993 cycsubgcl 19085 zaddablx 19751 cyggeninv 19762 zsubrg 21327 zringsub 21362 zringmulg 21363 zringinvg 21372 pzriprnglem4 21391 aaliou3lem9 26256 sinperlem 26387 wilthlem3 26978 basellem3 26991 basellem4 26992 basellem8 26996 basellem9 26997 lgsneg 27230 lgsdir2lem4 27237 lgsdir2lem5 27238 ex-fl 30391 ex-mod 30393 pell1234qrdich 42844 rmxyneg 42903 monotoddzzfi 42925 monotoddzz 42926 oddcomabszz 42927 jm2.24 42946 acongtr 42961 fzneg 42965 jm2.26a 42983 cosknegpi 45860 ceilbi 47327 enege 47639 onego 47640 0nodd 48164 2zrngagrp 48243 zlmodzxzequap 48494 flsubz 48517 digvalnn0 48594 dig0 48601 dig2nn0 48606 |
| Copyright terms: Public domain | W3C validator |