| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12595 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 11479 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 11534 | . . . . 5 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2787 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 12604 | . . . 4 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2843 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 12596 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 12614 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℝcr 11133 0cc0 11134 -cneg 11472 ℕcn 12245 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-nn 12246 df-z 12594 |
| This theorem is referenced by: znegclb 12634 nn0negz 12635 zsubcl 12639 zeo 12684 zindd 12699 znegcld 12704 zriotaneg 12711 uzneg 12877 zmax 12966 rebtwnz 12968 qnegcl 12987 fzsubel 13582 fzosubel 13745 ceilid 13873 modcyc2 13929 expsub 14133 seqshft 15109 climshft 15597 negdvdsb 16297 dvdsnegb 16298 summodnegmod 16311 dvdssub 16328 odd2np1 16365 divalglem6 16422 bitscmp 16462 gcdneg 16546 neggcd 16547 gcdaddmlem 16548 lcmneg 16627 neglcm 16628 lcmabs 16629 mulgaddcomlem 19085 mulgneg2 19096 mulgsubdir 19102 cycsubgcl 19194 zaddablx 19858 cyggeninv 19869 zsubrg 21393 zringsub 21421 zringmulg 21422 zringinvg 21431 pzriprnglem4 21450 aaliou3lem9 26315 sinperlem 26446 wilthlem3 27037 basellem3 27050 basellem4 27051 basellem8 27055 basellem9 27056 lgsneg 27289 lgsdir2lem4 27296 lgsdir2lem5 27297 ex-fl 30433 ex-mod 30435 pell1234qrdich 42859 rmxyneg 42919 monotoddzzfi 42941 monotoddzz 42942 oddcomabszz 42943 jm2.24 42962 acongtr 42977 fzneg 42981 jm2.26a 42999 cosknegpi 45878 ceilbi 47342 enege 47639 onego 47640 0nodd 48125 2zrngagrp 48204 zlmodzxzequap 48455 flsubz 48478 digvalnn0 48559 dig0 48566 dig2nn0 48571 |
| Copyright terms: Public domain | W3C validator |