Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12330 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 11222 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 11276 | . . . . 5 ⊢ -0 = 0 | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 12339 | . . . 4 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | eqeltrdi 2848 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 12331 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 12351 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1426 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 1, 9 | simplbiim 505 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 ℝcr 10879 0cc0 10880 -cneg 11215 ℕcn 11982 ℤcz 12328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 df-neg 11217 df-nn 11983 df-z 12329 |
This theorem is referenced by: znegclb 12366 nn0negz 12367 zsubcl 12371 zeo 12415 zindd 12430 znegcld 12437 zriotaneg 12444 uzneg 12611 zmax 12694 rebtwnz 12696 qnegcl 12715 fzsubel 13301 fzosubel 13455 ceilid 13580 modcyc2 13636 expsub 13840 seqshft 14805 climshft 15294 negdvdsb 15991 dvdsnegb 15992 summodnegmod 16005 dvdssub 16022 odd2np1 16059 divalglem6 16116 bitscmp 16154 gcdneg 16238 neggcd 16239 gcdaddmlem 16240 gcdabsOLD 16248 lcmneg 16317 neglcm 16318 lcmabs 16319 mulgaddcomlem 18735 mulgneg2 18746 mulgsubdir 18752 cycsubgcl 18834 zaddablx 19482 cyggeninv 19492 zsubrg 20660 zringmulg 20687 zringinvg 20696 aaliou3lem9 25519 sinperlem 25646 wilthlem3 26228 basellem3 26241 basellem4 26242 basellem8 26246 basellem9 26247 lgsneg 26478 lgsdir2lem4 26485 lgsdir2lem5 26486 ex-fl 28820 ex-mod 28822 pell1234qrdich 40690 rmxyneg 40749 monotoddzzfi 40771 monotoddzz 40772 oddcomabszz 40773 jm2.24 40792 acongtr 40807 fzneg 40811 jm2.26a 40829 cosknegpi 43417 enege 45108 onego 45109 0nodd 45375 2zrngagrp 45512 zlmodzxzequap 45851 flsubz 45874 digvalnn0 45956 dig0 45963 dig2nn0 45968 |
Copyright terms: Public domain | W3C validator |