| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12531 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 11413 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 11468 | . . . . 5 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 12540 | . . . 4 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 12532 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 12550 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℝcr 11067 0cc0 11068 -cneg 11406 ℕcn 12186 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-nn 12187 df-z 12530 |
| This theorem is referenced by: znegclb 12570 nn0negz 12571 zsubcl 12575 zeo 12620 zindd 12635 znegcld 12640 zriotaneg 12647 uzneg 12813 zmax 12904 rebtwnz 12906 qnegcl 12925 fzsubel 13521 fzosubel 13685 ceilid 13813 modcyc2 13869 expsub 14075 seqshft 15051 climshft 15542 negdvdsb 16242 dvdsnegb 16243 summodnegmod 16256 difmod0 16257 dvdssub 16274 odd2np1 16311 divalglem6 16368 bitscmp 16408 gcdneg 16492 neggcd 16493 gcdaddmlem 16494 lcmneg 16573 neglcm 16574 lcmabs 16575 mulgaddcomlem 19029 mulgneg2 19040 mulgsubdir 19046 cycsubgcl 19138 zaddablx 19802 cyggeninv 19813 zsubrg 21337 zringsub 21365 zringmulg 21366 zringinvg 21375 pzriprnglem4 21394 aaliou3lem9 26258 sinperlem 26389 wilthlem3 26980 basellem3 26993 basellem4 26994 basellem8 26998 basellem9 26999 lgsneg 27232 lgsdir2lem4 27239 lgsdir2lem5 27240 ex-fl 30376 ex-mod 30378 pell1234qrdich 42849 rmxyneg 42909 monotoddzzfi 42931 monotoddzz 42932 oddcomabszz 42933 jm2.24 42952 acongtr 42967 fzneg 42971 jm2.26a 42989 cosknegpi 45867 ceilbi 47334 enege 47646 onego 47647 0nodd 48158 2zrngagrp 48237 zlmodzxzequap 48488 flsubz 48511 digvalnn0 48588 dig0 48595 dig2nn0 48600 |
| Copyright terms: Public domain | W3C validator |