| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12507 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | negeq 11389 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
| 3 | neg0 11444 | . . . . 5 ⊢ -0 = 0 | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
| 5 | 0z 12516 | . . . 4 ⊢ 0 ∈ ℤ | |
| 6 | 4, 5 | eqeltrdi 2836 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
| 7 | nnnegz 12508 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 8 | nnz 12526 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3jaoi 1430 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℝcr 11043 0cc0 11044 -cneg 11382 ℕcn 12162 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-nn 12163 df-z 12506 |
| This theorem is referenced by: znegclb 12546 nn0negz 12547 zsubcl 12551 zeo 12596 zindd 12611 znegcld 12616 zriotaneg 12623 uzneg 12789 zmax 12880 rebtwnz 12882 qnegcl 12901 fzsubel 13497 fzosubel 13661 ceilid 13789 modcyc2 13845 expsub 14051 seqshft 15027 climshft 15518 negdvdsb 16218 dvdsnegb 16219 summodnegmod 16232 difmod0 16233 dvdssub 16250 odd2np1 16287 divalglem6 16344 bitscmp 16384 gcdneg 16468 neggcd 16469 gcdaddmlem 16470 lcmneg 16549 neglcm 16550 lcmabs 16551 mulgaddcomlem 19011 mulgneg2 19022 mulgsubdir 19028 cycsubgcl 19120 zaddablx 19786 cyggeninv 19797 zsubrg 21362 zringsub 21397 zringmulg 21398 zringinvg 21407 pzriprnglem4 21426 aaliou3lem9 26291 sinperlem 26422 wilthlem3 27013 basellem3 27026 basellem4 27027 basellem8 27031 basellem9 27032 lgsneg 27265 lgsdir2lem4 27272 lgsdir2lem5 27273 ex-fl 30426 ex-mod 30428 pell1234qrdich 42842 rmxyneg 42902 monotoddzzfi 42924 monotoddzz 42925 oddcomabszz 42926 jm2.24 42945 acongtr 42960 fzneg 42964 jm2.26a 42982 cosknegpi 45860 ceilbi 47327 enege 47639 onego 47640 0nodd 48151 2zrngagrp 48230 zlmodzxzequap 48481 flsubz 48504 digvalnn0 48581 dig0 48588 dig2nn0 48593 |
| Copyright terms: Public domain | W3C validator |