Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znegcl | Structured version Visualization version GIF version |
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
znegcl | ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12251 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | negeq 11143 | . . . . 5 ⊢ (𝑁 = 0 → -𝑁 = -0) | |
3 | neg0 11197 | . . . . 5 ⊢ -0 = 0 | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝑁 = 0 → -𝑁 = 0) |
5 | 0z 12260 | . . . 4 ⊢ 0 ∈ ℤ | |
6 | 4, 5 | eqeltrdi 2847 | . . 3 ⊢ (𝑁 = 0 → -𝑁 ∈ ℤ) |
7 | nnnegz 12252 | . . 3 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
8 | nnz 12272 | . . 3 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | |
9 | 6, 7, 8 | 3jaoi 1425 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
10 | 1, 9 | simplbiim 504 | 1 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ℝcr 10801 0cc0 10802 -cneg 11136 ℕcn 11903 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 |
This theorem is referenced by: znegclb 12287 nn0negz 12288 zsubcl 12292 zeo 12336 zindd 12351 znegcld 12357 zriotaneg 12364 uzneg 12531 zmax 12614 rebtwnz 12616 qnegcl 12635 fzsubel 13221 fzosubel 13374 ceilid 13499 modcyc2 13555 expsub 13759 seqshft 14724 climshft 15213 negdvdsb 15910 dvdsnegb 15911 summodnegmod 15924 dvdssub 15941 odd2np1 15978 divalglem6 16035 bitscmp 16073 gcdneg 16157 neggcd 16158 gcdaddmlem 16159 gcdabsOLD 16167 lcmneg 16236 neglcm 16237 lcmabs 16238 mulgaddcomlem 18641 mulgneg2 18652 mulgsubdir 18658 cycsubgcl 18740 zaddablx 19388 cyggeninv 19398 zsubrg 20563 zringmulg 20590 zringinvg 20599 aaliou3lem9 25415 sinperlem 25542 wilthlem3 26124 basellem3 26137 basellem4 26138 basellem8 26142 basellem9 26143 lgsneg 26374 lgsdir2lem4 26381 lgsdir2lem5 26382 ex-fl 28712 ex-mod 28714 pell1234qrdich 40599 rmxyneg 40658 monotoddzzfi 40680 monotoddzz 40681 oddcomabszz 40682 jm2.24 40701 acongtr 40716 fzneg 40720 jm2.26a 40738 cosknegpi 43300 enege 44985 onego 44986 0nodd 45252 2zrngagrp 45389 zlmodzxzequap 45728 flsubz 45751 digvalnn0 45833 dig0 45840 dig2nn0 45845 |
Copyright terms: Public domain | W3C validator |