| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11469 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11469 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7405 0cc0 11129 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 |
| This theorem is referenced by: negeqi 11475 negeqd 11476 neg11 11534 renegcl 11546 negn0 11666 negf1o 11667 negfi 12191 infm3lem 12200 infm3 12201 riotaneg 12221 negiso 12222 infrenegsup 12225 elz 12590 elz2 12606 znegcl 12627 zindd 12694 zriotaneg 12706 ublbneg 12949 eqreznegel 12950 supminf 12951 zsupss 12953 qnegcl 12982 xnegeq 13223 ceilval 13855 expneg 14087 m1expcl2 14103 sqeqor 14234 sqrmo 15270 dvdsnegb 16293 lcmneg 16622 pcexp 16879 pcneg 16894 mulgneg2 19091 negfcncf 24868 xrhmeo 24895 evth2 24910 volsup2 25558 mbfi1fseqlem2 25669 mbfi1fseq 25674 lhop2 25972 lognegb 26551 lgsdir2lem4 27291 rpvmasum2 27475 ex-ceil 30429 elrgspnlem1 33237 hgt749d 34681 itgaddnclem2 37703 ftc1anclem5 37721 areacirc 37737 renegclALT 38981 rexzrexnn0 42827 dvdsrabdioph 42833 monotoddzzfi 42966 monotoddzz 42967 oddcomabszz 42968 infnsuprnmpt 45274 supminfrnmpt 45472 supminfxr 45491 etransclem17 46280 etransclem46 46309 etransclem47 46310 2zrngagrp 48224 digval 48578 |
| Copyright terms: Public domain | W3C validator |