| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11347 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11347 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 (class class class)co 7346 0cc0 11006 − cmin 11344 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 |
| This theorem is referenced by: negeqi 11353 negeqd 11354 neg11 11412 renegcl 11424 negn0 11546 negf1o 11547 negfi 12071 infm3lem 12080 infm3 12081 riotaneg 12101 negiso 12102 infrenegsup 12105 elz 12470 elz2 12486 znegcl 12507 zindd 12574 zriotaneg 12586 ublbneg 12831 eqreznegel 12832 supminf 12833 zsupss 12835 qnegcl 12864 xnegeq 13106 ceilval 13742 expneg 13976 m1expcl2 13992 sqeqor 14123 sqrmo 15158 dvdsnegb 16184 lcmneg 16514 pcexp 16771 pcneg 16786 mulgneg2 19021 negfcncf 24844 xrhmeo 24871 evth2 24886 volsup2 25533 mbfi1fseqlem2 25644 mbfi1fseq 25649 lhop2 25947 lognegb 26526 lgsdir2lem4 27266 rpvmasum2 27450 ex-ceil 30428 elrgspnlem1 33209 hgt749d 34662 itgaddnclem2 37729 ftc1anclem5 37747 areacirc 37763 renegclALT 39072 rexzrexnn0 42907 dvdsrabdioph 42913 monotoddzzfi 43045 monotoddzz 43046 oddcomabszz 43047 infnsuprnmpt 45357 supminfrnmpt 45553 supminfxr 45572 etransclem17 46359 etransclem46 46388 etransclem47 46389 2zrngagrp 48359 digval 48709 |
| Copyright terms: Public domain | W3C validator |