| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7439 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11495 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11495 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7431 0cc0 11155 − cmin 11492 -cneg 11493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-neg 11495 |
| This theorem is referenced by: negeqi 11501 negeqd 11502 neg11 11560 renegcl 11572 negn0 11692 negf1o 11693 negfi 12217 infm3lem 12226 infm3 12227 riotaneg 12247 negiso 12248 infrenegsup 12251 elz 12615 elz2 12631 znegcl 12652 zindd 12719 zriotaneg 12731 ublbneg 12975 eqreznegel 12976 supminf 12977 zsupss 12979 qnegcl 13008 xnegeq 13249 ceilval 13878 expneg 14110 m1expcl2 14126 sqeqor 14255 sqrmo 15290 dvdsnegb 16311 lcmneg 16640 pcexp 16897 pcneg 16912 mulgneg2 19126 negfcncf 24950 xrhmeo 24977 evth2 24992 volsup2 25640 mbfi1fseqlem2 25751 mbfi1fseq 25756 lhop2 26054 lognegb 26632 lgsdir2lem4 27372 rpvmasum2 27556 ex-ceil 30467 elrgspnlem1 33246 hgt749d 34664 itgaddnclem2 37686 ftc1anclem5 37704 areacirc 37720 renegclALT 38964 rexzrexnn0 42815 dvdsrabdioph 42821 monotoddzzfi 42954 monotoddzz 42955 oddcomabszz 42956 infnsuprnmpt 45257 supminfrnmpt 45456 supminfxr 45475 etransclem17 46266 etransclem46 46295 etransclem47 46296 2zrngagrp 48165 digval 48519 |
| Copyright terms: Public domain | W3C validator |