| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11384 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11384 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7369 0cc0 11044 − cmin 11381 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-neg 11384 |
| This theorem is referenced by: negeqi 11390 negeqd 11391 neg11 11449 renegcl 11461 negn0 11583 negf1o 11584 negfi 12108 infm3lem 12117 infm3 12118 riotaneg 12138 negiso 12139 infrenegsup 12142 elz 12507 elz2 12523 znegcl 12544 zindd 12611 zriotaneg 12623 ublbneg 12868 eqreznegel 12869 supminf 12870 zsupss 12872 qnegcl 12901 xnegeq 13143 ceilval 13776 expneg 14010 m1expcl2 14026 sqeqor 14157 sqrmo 15193 dvdsnegb 16219 lcmneg 16549 pcexp 16806 pcneg 16821 mulgneg2 19016 negfcncf 24793 xrhmeo 24820 evth2 24835 volsup2 25482 mbfi1fseqlem2 25593 mbfi1fseq 25598 lhop2 25896 lognegb 26475 lgsdir2lem4 27215 rpvmasum2 27399 ex-ceil 30350 elrgspnlem1 33166 hgt749d 34613 itgaddnclem2 37646 ftc1anclem5 37664 areacirc 37680 renegclALT 38929 rexzrexnn0 42765 dvdsrabdioph 42771 monotoddzzfi 42904 monotoddzz 42905 oddcomabszz 42906 infnsuprnmpt 45217 supminfrnmpt 45414 supminfxr 45433 etransclem17 46222 etransclem46 46251 etransclem47 46252 2zrngagrp 48210 digval 48560 |
| Copyright terms: Public domain | W3C validator |