| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11408 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11408 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7387 0cc0 11068 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 |
| This theorem is referenced by: negeqi 11414 negeqd 11415 neg11 11473 renegcl 11485 negn0 11607 negf1o 11608 negfi 12132 infm3lem 12141 infm3 12142 riotaneg 12162 negiso 12163 infrenegsup 12166 elz 12531 elz2 12547 znegcl 12568 zindd 12635 zriotaneg 12647 ublbneg 12892 eqreznegel 12893 supminf 12894 zsupss 12896 qnegcl 12925 xnegeq 13167 ceilval 13800 expneg 14034 m1expcl2 14050 sqeqor 14181 sqrmo 15217 dvdsnegb 16243 lcmneg 16573 pcexp 16830 pcneg 16845 mulgneg2 19040 negfcncf 24817 xrhmeo 24844 evth2 24859 volsup2 25506 mbfi1fseqlem2 25617 mbfi1fseq 25622 lhop2 25920 lognegb 26499 lgsdir2lem4 27239 rpvmasum2 27423 ex-ceil 30377 elrgspnlem1 33193 hgt749d 34640 itgaddnclem2 37673 ftc1anclem5 37691 areacirc 37707 renegclALT 38956 rexzrexnn0 42792 dvdsrabdioph 42798 monotoddzzfi 42931 monotoddzz 42932 oddcomabszz 42933 infnsuprnmpt 45244 supminfrnmpt 45441 supminfxr 45460 etransclem17 46249 etransclem46 46278 etransclem47 46279 2zrngagrp 48237 digval 48587 |
| Copyright terms: Public domain | W3C validator |