| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7357 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11350 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11350 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7349 0cc0 11009 − cmin 11347 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 |
| This theorem is referenced by: negeqi 11356 negeqd 11357 neg11 11415 renegcl 11427 negn0 11549 negf1o 11550 negfi 12074 infm3lem 12083 infm3 12084 riotaneg 12104 negiso 12105 infrenegsup 12108 elz 12473 elz2 12489 znegcl 12510 zindd 12577 zriotaneg 12589 ublbneg 12834 eqreznegel 12835 supminf 12836 zsupss 12838 qnegcl 12867 xnegeq 13109 ceilval 13742 expneg 13976 m1expcl2 13992 sqeqor 14123 sqrmo 15158 dvdsnegb 16184 lcmneg 16514 pcexp 16771 pcneg 16786 mulgneg2 18987 negfcncf 24815 xrhmeo 24842 evth2 24857 volsup2 25504 mbfi1fseqlem2 25615 mbfi1fseq 25620 lhop2 25918 lognegb 26497 lgsdir2lem4 27237 rpvmasum2 27421 ex-ceil 30392 elrgspnlem1 33182 hgt749d 34617 itgaddnclem2 37659 ftc1anclem5 37677 areacirc 37693 renegclALT 38942 rexzrexnn0 42777 dvdsrabdioph 42783 monotoddzzfi 42915 monotoddzz 42916 oddcomabszz 42917 infnsuprnmpt 45228 supminfrnmpt 45424 supminfxr 45443 etransclem17 46232 etransclem46 46261 etransclem47 46262 2zrngagrp 48233 digval 48583 |
| Copyright terms: Public domain | W3C validator |