Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7315 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 11254 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 11254 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7307 0cc0 10917 − cmin 11251 -cneg 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-neg 11254 |
This theorem is referenced by: negeqi 11260 negeqd 11261 neg11 11318 renegcl 11330 negn0 11450 negf1o 11451 negfi 11970 infm3lem 11979 infm3 11980 riotaneg 12000 negiso 12001 infrenegsup 12004 elz 12367 elz2 12383 znegcl 12401 zindd 12467 zriotaneg 12481 ublbneg 12719 eqreznegel 12720 supminf 12721 zsupss 12723 qnegcl 12752 xnegeq 12987 ceilval 13604 expneg 13836 m1expcl2 13850 sqeqor 13978 sqrmo 15008 dvdsnegb 16028 lcmneg 16353 pcexp 16605 pcneg 16620 mulgneg2 18782 negfcncf 24131 xrhmeo 24154 evth2 24168 volsup2 24814 mbfi1fseqlem2 24926 mbfi1fseq 24931 lhop2 25224 lognegb 25790 lgsdir2lem4 26521 rpvmasum2 26705 ex-ceil 28857 hgt749d 32674 itgaddnclem2 35880 ftc1anclem5 35898 areacirc 35914 renegclALT 37019 rexzrexnn0 40663 dvdsrabdioph 40669 monotoddzzfi 40802 monotoddzz 40803 oddcomabszz 40804 infnsuprnmpt 42841 supminfrnmpt 43033 supminfxr 43052 etransclem17 43841 etransclem46 43870 etransclem47 43871 2zrngagrp 45559 digval 46002 |
Copyright terms: Public domain | W3C validator |