Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7276 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 11191 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 11191 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 (class class class)co 7268 0cc0 10855 − cmin 11188 -cneg 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-neg 11191 |
This theorem is referenced by: negeqi 11197 negeqd 11198 neg11 11255 renegcl 11267 negn0 11387 negf1o 11388 negfi 11907 infm3lem 11916 infm3 11917 riotaneg 11937 negiso 11938 infrenegsup 11941 elz 12304 elz2 12320 znegcl 12338 zindd 12404 zriotaneg 12417 ublbneg 12655 eqreznegel 12656 supminf 12657 zsupss 12659 qnegcl 12688 xnegeq 12923 ceilval 13539 expneg 13771 m1expcl2 13785 sqeqor 13913 sqrmo 14944 dvdsnegb 15964 lcmneg 16289 pcexp 16541 pcneg 16556 mulgneg2 18718 negfcncf 24067 xrhmeo 24090 evth2 24104 volsup2 24750 mbfi1fseqlem2 24862 mbfi1fseq 24867 lhop2 25160 lognegb 25726 lgsdir2lem4 26457 rpvmasum2 26641 ex-ceil 28791 hgt749d 32608 itgaddnclem2 35815 ftc1anclem5 35833 areacirc 35849 renegclALT 36956 rexzrexnn0 40606 dvdsrabdioph 40612 monotoddzzfi 40744 monotoddzz 40745 oddcomabszz 40746 infnsuprnmpt 42749 supminfrnmpt 42939 supminfxr 42958 etransclem17 43746 etransclem46 43775 etransclem47 43776 2zrngagrp 45453 digval 45896 |
Copyright terms: Public domain | W3C validator |