Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7276 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 11196 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 11196 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7268 0cc0 10859 − cmin 11193 -cneg 11194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-iota 6385 df-fv 6435 df-ov 7271 df-neg 11196 |
This theorem is referenced by: negeqi 11202 negeqd 11203 neg11 11260 renegcl 11272 negn0 11392 negf1o 11393 negfi 11912 infm3lem 11921 infm3 11922 riotaneg 11942 negiso 11943 infrenegsup 11946 elz 12309 elz2 12325 znegcl 12343 zindd 12409 zriotaneg 12423 ublbneg 12661 eqreznegel 12662 supminf 12663 zsupss 12665 qnegcl 12694 xnegeq 12929 ceilval 13546 expneg 13778 m1expcl2 13792 sqeqor 13920 sqrmo 14951 dvdsnegb 15971 lcmneg 16296 pcexp 16548 pcneg 16563 mulgneg2 18725 negfcncf 24074 xrhmeo 24097 evth2 24111 volsup2 24757 mbfi1fseqlem2 24869 mbfi1fseq 24874 lhop2 25167 lognegb 25733 lgsdir2lem4 26464 rpvmasum2 26648 ex-ceil 28798 hgt749d 32615 itgaddnclem2 35822 ftc1anclem5 35840 areacirc 35856 renegclALT 36963 rexzrexnn0 40612 dvdsrabdioph 40618 monotoddzzfi 40750 monotoddzz 40751 oddcomabszz 40752 infnsuprnmpt 42755 supminfrnmpt 42944 supminfxr 42963 etransclem17 43751 etransclem46 43780 etransclem47 43781 2zrngagrp 45457 digval 45900 |
Copyright terms: Public domain | W3C validator |