![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 11523 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 11523 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 (class class class)co 7448 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 |
This theorem is referenced by: negeqi 11529 negeqd 11530 neg11 11587 renegcl 11599 negn0 11719 negf1o 11720 negfi 12244 infm3lem 12253 infm3 12254 riotaneg 12274 negiso 12275 infrenegsup 12278 elz 12641 elz2 12657 znegcl 12678 zindd 12744 zriotaneg 12756 ublbneg 12998 eqreznegel 12999 supminf 13000 zsupss 13002 qnegcl 13031 xnegeq 13269 ceilval 13889 expneg 14120 m1expcl2 14136 sqeqor 14265 sqrmo 15300 dvdsnegb 16322 lcmneg 16650 pcexp 16906 pcneg 16921 mulgneg2 19148 negfcncf 24969 xrhmeo 24996 evth2 25011 volsup2 25659 mbfi1fseqlem2 25771 mbfi1fseq 25776 lhop2 26074 lognegb 26650 lgsdir2lem4 27390 rpvmasum2 27574 ex-ceil 30480 hgt749d 34626 itgaddnclem2 37639 ftc1anclem5 37657 areacirc 37673 renegclALT 38919 rexzrexnn0 42760 dvdsrabdioph 42766 monotoddzzfi 42899 monotoddzz 42900 oddcomabszz 42901 infnsuprnmpt 45159 supminfrnmpt 45360 supminfxr 45379 etransclem17 46172 etransclem46 46201 etransclem47 46202 2zrngagrp 47972 digval 48332 |
Copyright terms: Public domain | W3C validator |