| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 11415 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 11415 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7390 0cc0 11075 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 |
| This theorem is referenced by: negeqi 11421 negeqd 11422 neg11 11480 renegcl 11492 negn0 11614 negf1o 11615 negfi 12139 infm3lem 12148 infm3 12149 riotaneg 12169 negiso 12170 infrenegsup 12173 elz 12538 elz2 12554 znegcl 12575 zindd 12642 zriotaneg 12654 ublbneg 12899 eqreznegel 12900 supminf 12901 zsupss 12903 qnegcl 12932 xnegeq 13174 ceilval 13807 expneg 14041 m1expcl2 14057 sqeqor 14188 sqrmo 15224 dvdsnegb 16250 lcmneg 16580 pcexp 16837 pcneg 16852 mulgneg2 19047 negfcncf 24824 xrhmeo 24851 evth2 24866 volsup2 25513 mbfi1fseqlem2 25624 mbfi1fseq 25629 lhop2 25927 lognegb 26506 lgsdir2lem4 27246 rpvmasum2 27430 ex-ceil 30384 elrgspnlem1 33200 hgt749d 34647 itgaddnclem2 37680 ftc1anclem5 37698 areacirc 37714 renegclALT 38963 rexzrexnn0 42799 dvdsrabdioph 42805 monotoddzzfi 42938 monotoddzz 42939 oddcomabszz 42940 infnsuprnmpt 45251 supminfrnmpt 45448 supminfxr 45467 etransclem17 46256 etransclem46 46285 etransclem47 46286 2zrngagrp 48241 digval 48591 |
| Copyright terms: Public domain | W3C validator |