MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem1 Structured version   Visualization version   GIF version

Theorem ostthlem1 27578
Description: Lemma for ostth 27590. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem1.3 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
Assertion
Ref Expression
ostthlem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑛,𝐺   𝜑,𝑛   𝐴,𝑛   𝑄,𝑛   𝑛,𝐹

Proof of Theorem ostthlem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostthlem1.1 . . 3 (𝜑𝐹𝐴)
2 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
3 qrng.q . . . . 5 𝑄 = (ℂflds ℚ)
43qrngbas 27570 . . . 4 ℚ = (Base‘𝑄)
52, 4abvf 20708 . . 3 (𝐹𝐴𝐹:ℚ⟶ℝ)
6 ffn 6725 . . 3 (𝐹:ℚ⟶ℝ → 𝐹 Fn ℚ)
71, 5, 63syl 18 . 2 (𝜑𝐹 Fn ℚ)
8 ostthlem1.2 . . 3 (𝜑𝐺𝐴)
92, 4abvf 20708 . . 3 (𝐺𝐴𝐺:ℚ⟶ℝ)
10 ffn 6725 . . 3 (𝐺:ℚ⟶ℝ → 𝐺 Fn ℚ)
118, 9, 103syl 18 . 2 (𝜑𝐺 Fn ℚ)
12 elq 12970 . . . 4 (𝑦 ∈ ℚ ↔ ∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛))
133qdrng 27571 . . . . . . . . . 10 𝑄 ∈ DivRing
1413a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑄 ∈ DivRing)
151adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐹𝐴)
16 zq 12974 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
1716ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑘 ∈ ℚ)
18 nnq 12982 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1918ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℚ)
20 nnne0 12282 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2120ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ≠ 0)
223qrng0 27572 . . . . . . . . . 10 0 = (0g𝑄)
23 eqid 2727 . . . . . . . . . 10 (/r𝑄) = (/r𝑄)
242, 4, 22, 23abvdiv 20722 . . . . . . . . 9 (((𝑄 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
2514, 15, 17, 19, 21, 24syl23anc 1374 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
268adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐺𝐴)
272, 4, 22, 23abvdiv 20722 . . . . . . . . . 10 (((𝑄 ∈ DivRing ∧ 𝐺𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
2814, 26, 17, 19, 21, 27syl23anc 1374 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
292, 22abv0 20716 . . . . . . . . . . . . . . . . 17 (𝐹𝐴 → (𝐹‘0) = 0)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = 0)
312, 22abv0 20716 . . . . . . . . . . . . . . . . 17 (𝐺𝐴 → (𝐺‘0) = 0)
328, 31syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘0) = 0)
3330, 32eqtr4d 2770 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = (𝐺‘0))
34 fveq2 6900 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
35 fveq2 6900 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
3634, 35eqeq12d 2743 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘0) = (𝐺‘0)))
3733, 36syl5ibrcom 246 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3837adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3938imp 405 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝐹𝑘) = (𝐺𝑘))
40 elnn1uz2 12945 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
413qrng1 27573 . . . . . . . . . . . . . . . . . . . . . 22 1 = (1r𝑄)
422, 41abv1 20718 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘1) = 1)
4313, 1, 42sylancr 585 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹‘1) = 1)
442, 41abv1 20718 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐺𝐴) → (𝐺‘1) = 1)
4513, 8, 44sylancr 585 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺‘1) = 1)
4643, 45eqtr4d 2770 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹‘1) = (𝐺‘1))
47 fveq2 6900 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
48 fveq2 6900 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
4947, 48eqeq12d 2743 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘1) = (𝐺‘1)))
5046, 49syl5ibrcom 246 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑛 = 1 → (𝐹𝑛) = (𝐺𝑛)))
5150imp 405 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 1) → (𝐹𝑛) = (𝐺𝑛))
52 ostthlem1.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
5351, 52jaodan 955 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2))) → (𝐹𝑛) = (𝐺𝑛))
5440, 53sylan2b 592 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
5554ralrimiva 3142 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
5655adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
57 fveq2 6900 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
58 fveq2 6900 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
5957, 58eqeq12d 2743 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹𝑘) = (𝐺𝑘)))
6059rspccva 3608 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6156, 60sylan 578 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
62 fveq2 6900 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑘)))
63 fveq2 6900 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐺𝑛) = (𝐺‘((invg𝑄)‘𝑘)))
6462, 63eqeq12d 2743 . . . . . . . . . . . . . 14 (𝑛 = ((invg𝑄)‘𝑘) → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘))))
6555ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
6616adantl 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℚ)
673qrngneg 27574 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℚ → ((invg𝑄)‘𝑘) = -𝑘)
6866, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℤ) → ((invg𝑄)‘𝑘) = -𝑘)
6968eleq1d 2813 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (((invg𝑄)‘𝑘) ∈ ℕ ↔ -𝑘 ∈ ℕ))
7069biimpar 476 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ((invg𝑄)‘𝑘) ∈ ℕ)
7164, 65, 70rspcdva 3610 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
721ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐹𝐴)
7316ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℚ)
74 eqid 2727 . . . . . . . . . . . . . . 15 (invg𝑄) = (invg𝑄)
752, 4, 74abvneg 20719 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
7672, 73, 75syl2anc 582 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
778ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐺𝐴)
782, 4, 74abvneg 20719 . . . . . . . . . . . . . 14 ((𝐺𝐴𝑘 ∈ ℚ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
7977, 73, 78syl2anc 582 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8071, 76, 793eqtr3d 2775 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
81 elz 12596 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
8281simprbi 495 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8382adantl 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8439, 61, 80, 83mpjao3dan 1428 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐺𝑘))
8584adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑘) = (𝐺𝑘))
8654adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑛) = (𝐺𝑛))
8785, 86oveq12d 7442 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑘) / (𝐹𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
8828, 87eqtr4d 2770 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
8925, 88eqtr4d 2770 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘(/r𝑄)𝑛)))
903qrngdiv 27575 . . . . . . . . 9 ((𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9117, 19, 21, 90syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9291fveq2d 6904 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐹‘(𝑘 / 𝑛)))
9391fveq2d 6904 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘 / 𝑛)))
9489, 92, 933eqtr3d 2775 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛)))
95 fveq2 6900 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐹‘(𝑘 / 𝑛)))
96 fveq2 6900 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐺𝑦) = (𝐺‘(𝑘 / 𝑛)))
9795, 96eqeq12d 2743 . . . . . 6 (𝑦 = (𝑘 / 𝑛) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛))))
9894, 97syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
9998rexlimdvva 3207 . . . 4 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10012, 99biimtrid 241 . . 3 (𝜑 → (𝑦 ∈ ℚ → (𝐹𝑦) = (𝐺𝑦)))
101100imp 405 . 2 ((𝜑𝑦 ∈ ℚ) → (𝐹𝑦) = (𝐺𝑦))
1027, 11, 101eqfnfvd 7046 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3o 1083   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144  1c1 11145  -cneg 11481   / cdiv 11907  cn 12248  2c2 12303  cz 12594  cuz 12858  cq 12968  s cress 17214  invgcminusg 18896  /rcdvr 20344  DivRingcdr 20629  AbsValcabv 20701  fldccnfld 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-addf 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-q 12969  df-ico 13368  df-fz 13523  df-seq 14005  df-exp 14065  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-subg 19083  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-oppr 20278  df-dvdsr 20301  df-unit 20302  df-invr 20332  df-dvr 20345  df-subrng 20488  df-subrg 20513  df-drng 20631  df-abv 20702  df-cnfld 21285
This theorem is referenced by:  ostthlem2  27579  ostth2  27588
  Copyright terms: Public domain W3C validator