MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem1 Structured version   Visualization version   GIF version

Theorem ostthlem1 27538
Description: Lemma for ostth 27550. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem1.3 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
Assertion
Ref Expression
ostthlem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑛,𝐺   𝜑,𝑛   𝐴,𝑛   𝑄,𝑛   𝑛,𝐹

Proof of Theorem ostthlem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostthlem1.1 . . 3 (𝜑𝐹𝐴)
2 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
3 qrng.q . . . . 5 𝑄 = (ℂflds ℚ)
43qrngbas 27530 . . . 4 ℚ = (Base‘𝑄)
52, 4abvf 20724 . . 3 (𝐹𝐴𝐹:ℚ⟶ℝ)
6 ffn 6688 . . 3 (𝐹:ℚ⟶ℝ → 𝐹 Fn ℚ)
71, 5, 63syl 18 . 2 (𝜑𝐹 Fn ℚ)
8 ostthlem1.2 . . 3 (𝜑𝐺𝐴)
92, 4abvf 20724 . . 3 (𝐺𝐴𝐺:ℚ⟶ℝ)
10 ffn 6688 . . 3 (𝐺:ℚ⟶ℝ → 𝐺 Fn ℚ)
118, 9, 103syl 18 . 2 (𝜑𝐺 Fn ℚ)
12 elq 12909 . . . 4 (𝑦 ∈ ℚ ↔ ∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛))
133qdrng 27531 . . . . . . . . . 10 𝑄 ∈ DivRing
1413a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑄 ∈ DivRing)
151adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐹𝐴)
16 zq 12913 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
1716ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑘 ∈ ℚ)
18 nnq 12921 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1918ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℚ)
20 nnne0 12220 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2120ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ≠ 0)
223qrng0 27532 . . . . . . . . . 10 0 = (0g𝑄)
23 eqid 2729 . . . . . . . . . 10 (/r𝑄) = (/r𝑄)
242, 4, 22, 23abvdiv 20738 . . . . . . . . 9 (((𝑄 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
2514, 15, 17, 19, 21, 24syl23anc 1379 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
268adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐺𝐴)
272, 4, 22, 23abvdiv 20738 . . . . . . . . . 10 (((𝑄 ∈ DivRing ∧ 𝐺𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
2814, 26, 17, 19, 21, 27syl23anc 1379 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
292, 22abv0 20732 . . . . . . . . . . . . . . . . 17 (𝐹𝐴 → (𝐹‘0) = 0)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = 0)
312, 22abv0 20732 . . . . . . . . . . . . . . . . 17 (𝐺𝐴 → (𝐺‘0) = 0)
328, 31syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘0) = 0)
3330, 32eqtr4d 2767 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = (𝐺‘0))
34 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
35 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
3634, 35eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘0) = (𝐺‘0)))
3733, 36syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3837adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3938imp 406 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝐹𝑘) = (𝐺𝑘))
40 elnn1uz2 12884 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
413qrng1 27533 . . . . . . . . . . . . . . . . . . . . . 22 1 = (1r𝑄)
422, 41abv1 20734 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘1) = 1)
4313, 1, 42sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹‘1) = 1)
442, 41abv1 20734 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐺𝐴) → (𝐺‘1) = 1)
4513, 8, 44sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺‘1) = 1)
4643, 45eqtr4d 2767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹‘1) = (𝐺‘1))
47 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
48 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
4947, 48eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘1) = (𝐺‘1)))
5046, 49syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑛 = 1 → (𝐹𝑛) = (𝐺𝑛)))
5150imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 1) → (𝐹𝑛) = (𝐺𝑛))
52 ostthlem1.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
5351, 52jaodan 959 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2))) → (𝐹𝑛) = (𝐺𝑛))
5440, 53sylan2b 594 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
5554ralrimiva 3125 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
57 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
58 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
5957, 58eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹𝑘) = (𝐺𝑘)))
6059rspccva 3587 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6156, 60sylan 580 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
62 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑘)))
63 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐺𝑛) = (𝐺‘((invg𝑄)‘𝑘)))
6462, 63eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑛 = ((invg𝑄)‘𝑘) → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘))))
6555ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
6616adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℚ)
673qrngneg 27534 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℚ → ((invg𝑄)‘𝑘) = -𝑘)
6866, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℤ) → ((invg𝑄)‘𝑘) = -𝑘)
6968eleq1d 2813 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (((invg𝑄)‘𝑘) ∈ ℕ ↔ -𝑘 ∈ ℕ))
7069biimpar 477 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ((invg𝑄)‘𝑘) ∈ ℕ)
7164, 65, 70rspcdva 3589 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
721ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐹𝐴)
7316ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℚ)
74 eqid 2729 . . . . . . . . . . . . . . 15 (invg𝑄) = (invg𝑄)
752, 4, 74abvneg 20735 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
7672, 73, 75syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
778ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐺𝐴)
782, 4, 74abvneg 20735 . . . . . . . . . . . . . 14 ((𝐺𝐴𝑘 ∈ ℚ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
7977, 73, 78syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8071, 76, 793eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
81 elz 12531 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
8281simprbi 496 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8382adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8439, 61, 80, 83mpjao3dan 1434 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐺𝑘))
8584adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑘) = (𝐺𝑘))
8654adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑛) = (𝐺𝑛))
8785, 86oveq12d 7405 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑘) / (𝐹𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
8828, 87eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
8925, 88eqtr4d 2767 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘(/r𝑄)𝑛)))
903qrngdiv 27535 . . . . . . . . 9 ((𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9117, 19, 21, 90syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9291fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐹‘(𝑘 / 𝑛)))
9391fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘 / 𝑛)))
9489, 92, 933eqtr3d 2772 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛)))
95 fveq2 6858 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐹‘(𝑘 / 𝑛)))
96 fveq2 6858 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐺𝑦) = (𝐺‘(𝑘 / 𝑛)))
9795, 96eqeq12d 2745 . . . . . 6 (𝑦 = (𝑘 / 𝑛) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛))))
9894, 97syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
9998rexlimdvva 3194 . . . 4 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10012, 99biimtrid 242 . . 3 (𝜑 → (𝑦 ∈ ℚ → (𝐹𝑦) = (𝐺𝑦)))
101100imp 406 . 2 ((𝜑𝑦 ∈ ℚ) → (𝐹𝑦) = (𝐺𝑦))
1027, 11, 101eqfnfvd 7006 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  cz 12529  cuz 12793  cq 12907  s cress 17200  invgcminusg 18866  /rcdvr 20309  DivRingcdr 20638  AbsValcabv 20717  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-ico 13312  df-fz 13469  df-seq 13967  df-exp 14027  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-abv 20718  df-cnfld 21265
This theorem is referenced by:  ostthlem2  27539  ostth2  27548
  Copyright terms: Public domain W3C validator