MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem1 Structured version   Visualization version   GIF version

Theorem ostthlem1 26363
Description: Lemma for ostth 26375. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem1.3 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
Assertion
Ref Expression
ostthlem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑛,𝐺   𝜑,𝑛   𝐴,𝑛   𝑄,𝑛   𝑛,𝐹

Proof of Theorem ostthlem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostthlem1.1 . . 3 (𝜑𝐹𝐴)
2 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
3 qrng.q . . . . 5 𝑄 = (ℂflds ℚ)
43qrngbas 26355 . . . 4 ℚ = (Base‘𝑄)
52, 4abvf 19713 . . 3 (𝐹𝐴𝐹:ℚ⟶ℝ)
6 ffn 6504 . . 3 (𝐹:ℚ⟶ℝ → 𝐹 Fn ℚ)
71, 5, 63syl 18 . 2 (𝜑𝐹 Fn ℚ)
8 ostthlem1.2 . . 3 (𝜑𝐺𝐴)
92, 4abvf 19713 . . 3 (𝐺𝐴𝐺:ℚ⟶ℝ)
10 ffn 6504 . . 3 (𝐺:ℚ⟶ℝ → 𝐺 Fn ℚ)
118, 9, 103syl 18 . 2 (𝜑𝐺 Fn ℚ)
12 elq 12432 . . . 4 (𝑦 ∈ ℚ ↔ ∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛))
133qdrng 26356 . . . . . . . . . 10 𝑄 ∈ DivRing
1413a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑄 ∈ DivRing)
151adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐹𝐴)
16 zq 12436 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
1716ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑘 ∈ ℚ)
18 nnq 12444 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1918ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℚ)
20 nnne0 11750 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2120ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ≠ 0)
223qrng0 26357 . . . . . . . . . 10 0 = (0g𝑄)
23 eqid 2738 . . . . . . . . . 10 (/r𝑄) = (/r𝑄)
242, 4, 22, 23abvdiv 19727 . . . . . . . . 9 (((𝑄 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
2514, 15, 17, 19, 21, 24syl23anc 1378 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
268adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐺𝐴)
272, 4, 22, 23abvdiv 19727 . . . . . . . . . 10 (((𝑄 ∈ DivRing ∧ 𝐺𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
2814, 26, 17, 19, 21, 27syl23anc 1378 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
292, 22abv0 19721 . . . . . . . . . . . . . . . . 17 (𝐹𝐴 → (𝐹‘0) = 0)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = 0)
312, 22abv0 19721 . . . . . . . . . . . . . . . . 17 (𝐺𝐴 → (𝐺‘0) = 0)
328, 31syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘0) = 0)
3330, 32eqtr4d 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = (𝐺‘0))
34 fveq2 6674 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
35 fveq2 6674 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
3634, 35eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘0) = (𝐺‘0)))
3733, 36syl5ibrcom 250 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3837adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3938imp 410 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝐹𝑘) = (𝐺𝑘))
40 elnn1uz2 12407 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
413qrng1 26358 . . . . . . . . . . . . . . . . . . . . . 22 1 = (1r𝑄)
422, 41abv1 19723 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘1) = 1)
4313, 1, 42sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹‘1) = 1)
442, 41abv1 19723 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐺𝐴) → (𝐺‘1) = 1)
4513, 8, 44sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺‘1) = 1)
4643, 45eqtr4d 2776 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹‘1) = (𝐺‘1))
47 fveq2 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
48 fveq2 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
4947, 48eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘1) = (𝐺‘1)))
5046, 49syl5ibrcom 250 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑛 = 1 → (𝐹𝑛) = (𝐺𝑛)))
5150imp 410 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 1) → (𝐹𝑛) = (𝐺𝑛))
52 ostthlem1.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
5351, 52jaodan 957 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2))) → (𝐹𝑛) = (𝐺𝑛))
5440, 53sylan2b 597 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
5554ralrimiva 3096 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
5655adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
57 fveq2 6674 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
58 fveq2 6674 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
5957, 58eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹𝑘) = (𝐺𝑘)))
6059rspccva 3525 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6156, 60sylan 583 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
62 fveq2 6674 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑘)))
63 fveq2 6674 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐺𝑛) = (𝐺‘((invg𝑄)‘𝑘)))
6462, 63eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑛 = ((invg𝑄)‘𝑘) → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘))))
6555ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
6616adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℚ)
673qrngneg 26359 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℚ → ((invg𝑄)‘𝑘) = -𝑘)
6866, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℤ) → ((invg𝑄)‘𝑘) = -𝑘)
6968eleq1d 2817 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (((invg𝑄)‘𝑘) ∈ ℕ ↔ -𝑘 ∈ ℕ))
7069biimpar 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ((invg𝑄)‘𝑘) ∈ ℕ)
7164, 65, 70rspcdva 3528 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
721ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐹𝐴)
7316ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℚ)
74 eqid 2738 . . . . . . . . . . . . . . 15 (invg𝑄) = (invg𝑄)
752, 4, 74abvneg 19724 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
7672, 73, 75syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
778ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐺𝐴)
782, 4, 74abvneg 19724 . . . . . . . . . . . . . 14 ((𝐺𝐴𝑘 ∈ ℚ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
7977, 73, 78syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8071, 76, 793eqtr3d 2781 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
81 elz 12064 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
8281simprbi 500 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8382adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8439, 61, 80, 83mpjao3dan 1432 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐺𝑘))
8584adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑘) = (𝐺𝑘))
8654adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑛) = (𝐺𝑛))
8785, 86oveq12d 7188 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑘) / (𝐹𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
8828, 87eqtr4d 2776 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
8925, 88eqtr4d 2776 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘(/r𝑄)𝑛)))
903qrngdiv 26360 . . . . . . . . 9 ((𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9117, 19, 21, 90syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9291fveq2d 6678 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐹‘(𝑘 / 𝑛)))
9391fveq2d 6678 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘 / 𝑛)))
9489, 92, 933eqtr3d 2781 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛)))
95 fveq2 6674 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐹‘(𝑘 / 𝑛)))
96 fveq2 6674 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐺𝑦) = (𝐺‘(𝑘 / 𝑛)))
9795, 96eqeq12d 2754 . . . . . 6 (𝑦 = (𝑘 / 𝑛) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛))))
9894, 97syl5ibrcom 250 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
9998rexlimdvva 3204 . . . 4 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10012, 99syl5bi 245 . . 3 (𝜑 → (𝑦 ∈ ℚ → (𝐹𝑦) = (𝐺𝑦)))
101100imp 410 . 2 ((𝜑𝑦 ∈ ℚ) → (𝐹𝑦) = (𝐺𝑦))
1027, 11, 101eqfnfvd 6812 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846  w3o 1087   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170  cr 10614  0cc0 10615  1c1 10616  -cneg 10949   / cdiv 11375  cn 11716  2c2 11771  cz 12062  cuz 12324  cq 12430  s cress 16587  invgcminusg 18220  /rcdvr 19554  DivRingcdr 19621  AbsValcabv 19706  fldccnfld 20217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-ico 12827  df-fz 12982  df-seq 13461  df-exp 13522  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-subg 18394  df-cmn 19026  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-subrg 19652  df-abv 19707  df-cnfld 20218
This theorem is referenced by:  ostthlem2  26364  ostth2  26373
  Copyright terms: Public domain W3C validator