MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem1 Structured version   Visualization version   GIF version

Theorem ostthlem1 27514
Description: Lemma for ostth 27526. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem1.3 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
Assertion
Ref Expression
ostthlem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑛,𝐺   𝜑,𝑛   𝐴,𝑛   𝑄,𝑛   𝑛,𝐹

Proof of Theorem ostthlem1
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostthlem1.1 . . 3 (𝜑𝐹𝐴)
2 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
3 qrng.q . . . . 5 𝑄 = (ℂflds ℚ)
43qrngbas 27506 . . . 4 ℚ = (Base‘𝑄)
52, 4abvf 20700 . . 3 (𝐹𝐴𝐹:ℚ⟶ℝ)
6 ffn 6670 . . 3 (𝐹:ℚ⟶ℝ → 𝐹 Fn ℚ)
71, 5, 63syl 18 . 2 (𝜑𝐹 Fn ℚ)
8 ostthlem1.2 . . 3 (𝜑𝐺𝐴)
92, 4abvf 20700 . . 3 (𝐺𝐴𝐺:ℚ⟶ℝ)
10 ffn 6670 . . 3 (𝐺:ℚ⟶ℝ → 𝐺 Fn ℚ)
118, 9, 103syl 18 . 2 (𝜑𝐺 Fn ℚ)
12 elq 12885 . . . 4 (𝑦 ∈ ℚ ↔ ∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛))
133qdrng 27507 . . . . . . . . . 10 𝑄 ∈ DivRing
1413a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑄 ∈ DivRing)
151adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐹𝐴)
16 zq 12889 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
1716ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑘 ∈ ℚ)
18 nnq 12897 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1918ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℚ)
20 nnne0 12196 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2120ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝑛 ≠ 0)
223qrng0 27508 . . . . . . . . . 10 0 = (0g𝑄)
23 eqid 2729 . . . . . . . . . 10 (/r𝑄) = (/r𝑄)
242, 4, 22, 23abvdiv 20714 . . . . . . . . 9 (((𝑄 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
2514, 15, 17, 19, 21, 24syl23anc 1379 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
268adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → 𝐺𝐴)
272, 4, 22, 23abvdiv 20714 . . . . . . . . . 10 (((𝑄 ∈ DivRing ∧ 𝐺𝐴) ∧ (𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
2814, 26, 17, 19, 21, 27syl23anc 1379 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
292, 22abv0 20708 . . . . . . . . . . . . . . . . 17 (𝐹𝐴 → (𝐹‘0) = 0)
301, 29syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = 0)
312, 22abv0 20708 . . . . . . . . . . . . . . . . 17 (𝐺𝐴 → (𝐺‘0) = 0)
328, 31syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘0) = 0)
3330, 32eqtr4d 2767 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = (𝐺‘0))
34 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
35 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝐺𝑘) = (𝐺‘0))
3634, 35eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘0) = (𝐺‘0)))
3733, 36syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3837adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 → (𝐹𝑘) = (𝐺𝑘)))
3938imp 406 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝐹𝑘) = (𝐺𝑘))
40 elnn1uz2 12860 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
413qrng1 27509 . . . . . . . . . . . . . . . . . . . . . 22 1 = (1r𝑄)
422, 41abv1 20710 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘1) = 1)
4313, 1, 42sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹‘1) = 1)
442, 41abv1 20710 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ DivRing ∧ 𝐺𝐴) → (𝐺‘1) = 1)
4513, 8, 44sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺‘1) = 1)
4643, 45eqtr4d 2767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹‘1) = (𝐺‘1))
47 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
48 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
4947, 48eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘1) = (𝐺‘1)))
5046, 49syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑛 = 1 → (𝐹𝑛) = (𝐺𝑛)))
5150imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 1) → (𝐹𝑛) = (𝐺𝑛))
52 ostthlem1.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
5351, 52jaodan 959 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2))) → (𝐹𝑛) = (𝐺𝑛))
5440, 53sylan2b 594 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
5554ralrimiva 3125 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
57 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
58 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
5957, 58eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹𝑘) = (𝐺𝑘)))
6059rspccva 3584 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
6156, 60sylan 580 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
62 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑘)))
63 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑛 = ((invg𝑄)‘𝑘) → (𝐺𝑛) = (𝐺‘((invg𝑄)‘𝑘)))
6462, 63eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑛 = ((invg𝑄)‘𝑘) → ((𝐹𝑛) = (𝐺𝑛) ↔ (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘))))
6555ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) = (𝐺𝑛))
6616adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℚ)
673qrngneg 27510 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℚ → ((invg𝑄)‘𝑘) = -𝑘)
6866, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℤ) → ((invg𝑄)‘𝑘) = -𝑘)
6968eleq1d 2813 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (((invg𝑄)‘𝑘) ∈ ℕ ↔ -𝑘 ∈ ℕ))
7069biimpar 477 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → ((invg𝑄)‘𝑘) ∈ ℕ)
7164, 65, 70rspcdva 3586 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐺‘((invg𝑄)‘𝑘)))
721ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐹𝐴)
7316ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℚ)
74 eqid 2729 . . . . . . . . . . . . . . 15 (invg𝑄) = (invg𝑄)
752, 4, 74abvneg 20711 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
7672, 73, 75syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹‘((invg𝑄)‘𝑘)) = (𝐹𝑘))
778ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → 𝐺𝐴)
782, 4, 74abvneg 20711 . . . . . . . . . . . . . 14 ((𝐺𝐴𝑘 ∈ ℚ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
7977, 73, 78syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐺‘((invg𝑄)‘𝑘)) = (𝐺𝑘))
8071, 76, 793eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ -𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐺𝑘))
81 elz 12507 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
8281simprbi 496 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8382adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
8439, 61, 80, 83mpjao3dan 1434 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐺𝑘))
8584adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑘) = (𝐺𝑘))
8654adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹𝑛) = (𝐺𝑛))
8785, 86oveq12d 7387 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑘) / (𝐹𝑛)) = ((𝐺𝑘) / (𝐺𝑛)))
8828, 87eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = ((𝐹𝑘) / (𝐹𝑛)))
8925, 88eqtr4d 2767 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘(/r𝑄)𝑛)))
903qrngdiv 27511 . . . . . . . . 9 ((𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9117, 19, 21, 90syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑘(/r𝑄)𝑛) = (𝑘 / 𝑛))
9291fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘(/r𝑄)𝑛)) = (𝐹‘(𝑘 / 𝑛)))
9391fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐺‘(𝑘(/r𝑄)𝑛)) = (𝐺‘(𝑘 / 𝑛)))
9489, 92, 933eqtr3d 2772 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛)))
95 fveq2 6840 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐹‘(𝑘 / 𝑛)))
96 fveq2 6840 . . . . . . 7 (𝑦 = (𝑘 / 𝑛) → (𝐺𝑦) = (𝐺‘(𝑘 / 𝑛)))
9795, 96eqeq12d 2745 . . . . . 6 (𝑦 = (𝑘 / 𝑛) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘(𝑘 / 𝑛)) = (𝐺‘(𝑘 / 𝑛))))
9894, 97syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
9998rexlimdvva 3192 . . . 4 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑛 ∈ ℕ 𝑦 = (𝑘 / 𝑛) → (𝐹𝑦) = (𝐺𝑦)))
10012, 99biimtrid 242 . . 3 (𝜑 → (𝑦 ∈ ℚ → (𝐹𝑦) = (𝐺𝑦)))
101100imp 406 . 2 ((𝜑𝑦 ∈ ℚ) → (𝐹𝑦) = (𝐺𝑦))
1027, 11, 101eqfnfvd 6988 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  cz 12505  cuz 12769  cq 12883  s cress 17176  invgcminusg 18842  /rcdvr 20285  DivRingcdr 20614  AbsValcabv 20693  fldccnfld 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-ico 13288  df-fz 13445  df-seq 13943  df-exp 14003  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-abv 20694  df-cnfld 21241
This theorem is referenced by:  ostthlem2  27515  ostth2  27524
  Copyright terms: Public domain W3C validator