MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0nn Structured version   Visualization version   GIF version

Theorem elznn0nn 12627
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 12615 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 andi 1010 . . 3 ((𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3 df-3or 1088 . . . 4 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ))
43anbi2i 623 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)))
5 nn0re 12535 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65pm4.71ri 560 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0))
7 elnn0 12528 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 orcom 871 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
97, 8bitri 275 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
109anbi2i 623 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
116, 10bitri 275 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
1211orbi1i 914 . . 3 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
132, 4, 123bitr4i 303 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
141, 13bitri 275 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  cr 11154  0cc0 11155  -cneg 11493  cn 12266  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  zindd  12719  expcl2lem  14114  mulexpz  14143  expaddz  14147  expmulz  14149  absexpz  15344  bitsfzo  16472  pcid  16911  mulgsubcl  19106  mulgneg  19110  ghmmulg  19246  prmirred  21485  tgpmulg  24101  dvexp3  26016  2sqnn0  27482  ipasslem3  30852  reelznn0nn  42479  ztprmneprm  48263
  Copyright terms: Public domain W3C validator