MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2d Structured version   Visualization version   GIF version

Theorem enpr2d 9088
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7754. (Revised by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . 3 (𝜑𝐴𝐶)
2 enpr2d.2 . . 3 (𝜑𝐵𝐷)
3 0ex 5313 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝜑 → ∅ ∈ V)
5 1oex 8515 . . . 4 1o ∈ V
65a1i 11 . . 3 (𝜑 → 1o ∈ V)
7 enpr2d.3 . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
87neqned 2945 . . 3 (𝜑𝐴𝐵)
9 1n0 8525 . . . . 5 1o ≠ ∅
109necomi 2993 . . . 4 ∅ ≠ 1o
1110a1i 11 . . 3 (𝜑 → ∅ ≠ 1o)
121, 2, 4, 6, 8, 11en2prd 9087 . 2 (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o})
13 df2o3 8513 . 2 2o = {∅, 1o}
1412, 13breqtrrdi 5190 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  c0 4339  {cpr 4633   class class class wbr 5148  1oc1o 8498  2oc2o 8499  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-suc 6392  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-1o 8505  df-2o 8506  df-en 8985
This theorem is referenced by:  1sdom2dom  9281  prfi  9361  enpr2  10040  simpgnsgd  20135  2nsgsimpgd  20137
  Copyright terms: Public domain W3C validator