MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2d Structured version   Visualization version   GIF version

Theorem enpr2d 9045
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7718. (Revised by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . 3 (𝜑𝐴𝐶)
2 enpr2d.2 . . 3 (𝜑𝐵𝐷)
3 0ex 5297 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝜑 → ∅ ∈ V)
5 1oex 8471 . . . 4 1o ∈ V
65a1i 11 . . 3 (𝜑 → 1o ∈ V)
7 enpr2d.3 . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
87neqned 2939 . . 3 (𝜑𝐴𝐵)
9 1n0 8483 . . . . 5 1o ≠ ∅
109necomi 2987 . . . 4 ∅ ≠ 1o
1110a1i 11 . . 3 (𝜑 → ∅ ≠ 1o)
121, 2, 4, 6, 8, 11en2prd 9044 . 2 (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o})
13 df2o3 8469 . 2 2o = {∅, 1o}
1412, 13breqtrrdi 5180 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  c0 4314  {cpr 4622   class class class wbr 5138  1oc1o 8454  2oc2o 8455  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-suc 6360  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-1o 8461  df-2o 8462  df-en 8936
This theorem is referenced by:  1sdom2dom  9243  enpr2  9993  simpgnsgd  20012  2nsgsimpgd  20014
  Copyright terms: Public domain W3C validator