Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enpr2d | Structured version Visualization version GIF version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | ensn1g 8809 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
4 | enpr2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
5 | 1on 8309 | . . . . 5 ⊢ 1o ∈ On | |
6 | en2sn 8831 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
7 | 4, 5, 6 | sylancl 586 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
8 | enpr2d.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
9 | 8 | neqned 2950 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | disjsn2 4648 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
12 | 5 | onirri 6373 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
14 | disjsn 4647 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
15 | 13, 14 | sylibr 233 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
16 | unen 8836 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
17 | 3, 7, 11, 15, 16 | syl22anc 836 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
18 | df-pr 4564 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
19 | df-suc 6272 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
20 | 17, 18, 19 | 3brtr4g 5108 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
21 | df-2o 8298 | . 2 ⊢ 2o = suc 1o | |
22 | 20, 21 | breqtrrdi 5116 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 {cpr 4563 class class class wbr 5074 Oncon0 6266 suc csuc 6268 1oc1o 8290 2oc2o 8291 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-1o 8297 df-2o 8298 df-en 8734 |
This theorem is referenced by: simpgnsgd 19703 2nsgsimpgd 19705 |
Copyright terms: Public domain | W3C validator |