MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2d Structured version   Visualization version   GIF version

Theorem enpr2d 9000
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7677. (Revised by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . 3 (𝜑𝐴𝐶)
2 enpr2d.2 . . 3 (𝜑𝐵𝐷)
3 0ex 5269 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝜑 → ∅ ∈ V)
5 1oex 8427 . . . 4 1o ∈ V
65a1i 11 . . 3 (𝜑 → 1o ∈ V)
7 enpr2d.3 . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
87neqned 2951 . . 3 (𝜑𝐴𝐵)
9 1n0 8439 . . . . 5 1o ≠ ∅
109necomi 2999 . . . 4 ∅ ≠ 1o
1110a1i 11 . . 3 (𝜑 → ∅ ≠ 1o)
121, 2, 4, 6, 8, 11en2prd 8999 . 2 (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o})
13 df2o3 8425 . 2 2o = {∅, 1o}
1412, 13breqtrrdi 5152 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  wne 2944  Vcvv 3448  c0 4287  {cpr 4593   class class class wbr 5110  1oc1o 8410  2oc2o 8411  cen 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6328  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-1o 8417  df-2o 8418  df-en 8891
This theorem is referenced by:  1sdom2dom  9198  enpr2  9945  simpgnsgd  19886  2nsgsimpgd  19888
  Copyright terms: Public domain W3C validator