![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enpr2d | Structured version Visualization version GIF version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7725. (Revised by BTernaryTau, 23-Dec-2024.) |
Ref | Expression |
---|---|
enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | enpr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | 0ex 5308 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
5 | 1oex 8476 | . . . 4 ⊢ 1o ∈ V | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
7 | enpr2d.3 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
8 | 7 | neqned 2948 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
9 | 1n0 8488 | . . . . 5 ⊢ 1o ≠ ∅ | |
10 | 9 | necomi 2996 | . . . 4 ⊢ ∅ ≠ 1o |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ≠ 1o) |
12 | 1, 2, 4, 6, 8, 11 | en2prd 9048 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o}) |
13 | df2o3 8474 | . 2 ⊢ 2o = {∅, 1o} | |
14 | 12, 13 | breqtrrdi 5191 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 {cpr 4631 class class class wbr 5149 1oc1o 8459 2oc2o 8460 ≈ cen 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-suc 6371 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-1o 8466 df-2o 8467 df-en 8940 |
This theorem is referenced by: 1sdom2dom 9247 enpr2 9997 simpgnsgd 19970 2nsgsimpgd 19972 |
Copyright terms: Public domain | W3C validator |