![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enpr2d | Structured version Visualization version GIF version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7770. (Revised by BTernaryTau, 23-Dec-2024.) |
Ref | Expression |
---|---|
enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | enpr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
5 | 1oex 8532 | . . . 4 ⊢ 1o ∈ V | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
7 | enpr2d.3 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
8 | 7 | neqned 2953 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
9 | 1n0 8544 | . . . . 5 ⊢ 1o ≠ ∅ | |
10 | 9 | necomi 3001 | . . . 4 ⊢ ∅ ≠ 1o |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ≠ 1o) |
12 | 1, 2, 4, 6, 8, 11 | en2prd 9114 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o}) |
13 | df2o3 8530 | . 2 ⊢ 2o = {∅, 1o} | |
14 | 12, 13 | breqtrrdi 5208 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {cpr 4650 class class class wbr 5166 1oc1o 8515 2oc2o 8516 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-2o 8523 df-en 9004 |
This theorem is referenced by: 1sdom2dom 9310 prfi 9391 enpr2 10071 simpgnsgd 20144 2nsgsimpgd 20146 |
Copyright terms: Public domain | W3C validator |