| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enpr2d | Structured version Visualization version GIF version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7729. (Revised by BTernaryTau, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | enpr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
| 5 | 1oex 8490 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ V) |
| 7 | enpr2d.3 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 8 | 7 | neqned 2939 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 9 | 1n0 8500 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 10 | 9 | necomi 2986 | . . . 4 ⊢ ∅ ≠ 1o |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ≠ 1o) |
| 12 | 1, 2, 4, 6, 8, 11 | en2prd 9062 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o}) |
| 13 | df2o3 8488 | . 2 ⊢ 2o = {∅, 1o} | |
| 14 | 12, 13 | breqtrrdi 5161 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 {cpr 4603 class class class wbr 5119 1oc1o 8473 2oc2o 8474 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-1o 8480 df-2o 8481 df-en 8960 |
| This theorem is referenced by: 1sdom2dom 9255 prfi 9335 enpr2 10016 simpgnsgd 20083 2nsgsimpgd 20085 |
| Copyright terms: Public domain | W3C validator |