MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2d Structured version   Visualization version   GIF version

Theorem enpr2d 9049
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-un 7725. (Revised by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . 3 (𝜑𝐴𝐶)
2 enpr2d.2 . . 3 (𝜑𝐵𝐷)
3 0ex 5308 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝜑 → ∅ ∈ V)
5 1oex 8476 . . . 4 1o ∈ V
65a1i 11 . . 3 (𝜑 → 1o ∈ V)
7 enpr2d.3 . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
87neqned 2948 . . 3 (𝜑𝐴𝐵)
9 1n0 8488 . . . . 5 1o ≠ ∅
109necomi 2996 . . . 4 ∅ ≠ 1o
1110a1i 11 . . 3 (𝜑 → ∅ ≠ 1o)
121, 2, 4, 6, 8, 11en2prd 9048 . 2 (𝜑 → {𝐴, 𝐵} ≈ {∅, 1o})
13 df2o3 8474 . 2 2o = {∅, 1o}
1412, 13breqtrrdi 5191 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  c0 4323  {cpr 4631   class class class wbr 5149  1oc1o 8459  2oc2o 8460  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-suc 6371  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-1o 8466  df-2o 8467  df-en 8940
This theorem is referenced by:  1sdom2dom  9247  enpr2  9997  simpgnsgd  19970  2nsgsimpgd  19972
  Copyright terms: Public domain W3C validator