| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrefnn | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8916). (Contributed by BTernaryTau, 31-Jul-2024.) |
| Ref | Expression |
|---|---|
| enrefnn | ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
| 2 | 1, 1 | breq12d 5108 | . 2 ⊢ (𝑥 = ∅ → (𝑥 ≈ 𝑥 ↔ ∅ ≈ ∅)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 4 | 3, 3 | breq12d 5108 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ≈ 𝑥 ↔ 𝑦 ≈ 𝑦)) |
| 5 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
| 6 | 5, 5 | breq12d 5108 | . 2 ⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ 𝑥 ↔ suc 𝑦 ≈ suc 𝑦)) |
| 7 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 8 | 7, 7 | breq12d 5108 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) |
| 9 | eqid 2729 | . . 3 ⊢ ∅ = ∅ | |
| 10 | en0 8950 | . . 3 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 11 | 9, 10 | mpbir 231 | . 2 ⊢ ∅ ≈ ∅ |
| 12 | en2sn 8973 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦}) | |
| 13 | 12 | el2v 3445 | . . . . . 6 ⊢ {𝑦} ≈ {𝑦} |
| 14 | 13 | jctr 524 | . . . . 5 ⊢ (𝑦 ≈ 𝑦 → (𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦})) |
| 15 | nnord 7814 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
| 16 | orddisj 6349 | . . . . . . 7 ⊢ (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅) |
| 18 | 17, 17 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) |
| 19 | unen 8978 | . . . . 5 ⊢ (((𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) | |
| 20 | 14, 18, 19 | syl2anr 597 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) |
| 21 | df-suc 6317 | . . . 4 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
| 22 | 20, 21, 21 | 3brtr4g 5129 | . . 3 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → suc 𝑦 ≈ suc 𝑦) |
| 23 | 22 | ex 412 | . 2 ⊢ (𝑦 ∈ ω → (𝑦 ≈ 𝑦 → suc 𝑦 ≈ suc 𝑦)) |
| 24 | 2, 4, 6, 8, 11, 23 | finds 7836 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ∩ cin 3904 ∅c0 4286 {csn 4579 class class class wbr 5095 Ord word 6310 suc csuc 6313 ωcom 7806 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-om 7807 df-en 8880 |
| This theorem is referenced by: nnfi 9091 pssnn 9092 phplem1 9128 nneneq 9130 onomeneq 9138 onfin 9139 isinf 9165 |
| Copyright terms: Public domain | W3C validator |