Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enrefnn | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8727). (Contributed by BTernaryTau, 31-Jul-2024.) |
Ref | Expression |
---|---|
enrefnn | ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
2 | 1, 1 | breq12d 5083 | . 2 ⊢ (𝑥 = ∅ → (𝑥 ≈ 𝑥 ↔ ∅ ≈ ∅)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
4 | 3, 3 | breq12d 5083 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ≈ 𝑥 ↔ 𝑦 ≈ 𝑦)) |
5 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
6 | 5, 5 | breq12d 5083 | . 2 ⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ 𝑥 ↔ suc 𝑦 ≈ suc 𝑦)) |
7 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
8 | 7, 7 | breq12d 5083 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) |
9 | eqid 2738 | . . 3 ⊢ ∅ = ∅ | |
10 | en0 8758 | . . 3 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
11 | 9, 10 | mpbir 230 | . 2 ⊢ ∅ ≈ ∅ |
12 | en2sn 8785 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦}) | |
13 | 12 | el2v 3430 | . . . . . 6 ⊢ {𝑦} ≈ {𝑦} |
14 | 13 | jctr 524 | . . . . 5 ⊢ (𝑦 ≈ 𝑦 → (𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦})) |
15 | nnord 7695 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
16 | orddisj 6289 | . . . . . . 7 ⊢ (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅) |
18 | 17, 17 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) |
19 | unen 8790 | . . . . 5 ⊢ (((𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) | |
20 | 14, 18, 19 | syl2anr 596 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) |
21 | df-suc 6257 | . . . 4 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
22 | 20, 21, 21 | 3brtr4g 5104 | . . 3 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → suc 𝑦 ≈ suc 𝑦) |
23 | 22 | ex 412 | . 2 ⊢ (𝑦 ∈ ω → (𝑦 ≈ 𝑦 → suc 𝑦 ≈ suc 𝑦)) |
24 | 2, 4, 6, 8, 11, 23 | finds 7719 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 class class class wbr 5070 Ord word 6250 suc csuc 6253 ωcom 7687 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-om 7688 df-en 8692 |
This theorem is referenced by: nnfi 8912 pssnn 8913 ssnnfiOLD 8915 |
Copyright terms: Public domain | W3C validator |