![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrefnn | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 9044). (Contributed by BTernaryTau, 31-Jul-2024.) |
Ref | Expression |
---|---|
enrefnn | ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
2 | 1, 1 | breq12d 5179 | . 2 ⊢ (𝑥 = ∅ → (𝑥 ≈ 𝑥 ↔ ∅ ≈ ∅)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
4 | 3, 3 | breq12d 5179 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ≈ 𝑥 ↔ 𝑦 ≈ 𝑦)) |
5 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
6 | 5, 5 | breq12d 5179 | . 2 ⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ 𝑥 ↔ suc 𝑦 ≈ suc 𝑦)) |
7 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
8 | 7, 7 | breq12d 5179 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) |
9 | eqid 2740 | . . 3 ⊢ ∅ = ∅ | |
10 | en0 9078 | . . 3 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
11 | 9, 10 | mpbir 231 | . 2 ⊢ ∅ ≈ ∅ |
12 | en2sn 9106 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦}) | |
13 | 12 | el2v 3495 | . . . . . 6 ⊢ {𝑦} ≈ {𝑦} |
14 | 13 | jctr 524 | . . . . 5 ⊢ (𝑦 ≈ 𝑦 → (𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦})) |
15 | nnord 7911 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
16 | orddisj 6433 | . . . . . . 7 ⊢ (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅) |
18 | 17, 17 | jca 511 | . . . . 5 ⊢ (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) |
19 | unen 9112 | . . . . 5 ⊢ (((𝑦 ≈ 𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) | |
20 | 14, 18, 19 | syl2anr 596 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦})) |
21 | df-suc 6401 | . . . 4 ⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) | |
22 | 20, 21, 21 | 3brtr4g 5200 | . . 3 ⊢ ((𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦) → suc 𝑦 ≈ suc 𝑦) |
23 | 22 | ex 412 | . 2 ⊢ (𝑦 ∈ ω → (𝑦 ≈ 𝑦 → suc 𝑦 ≈ suc 𝑦)) |
24 | 2, 4, 6, 8, 11, 23 | finds 7936 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 class class class wbr 5166 Ord word 6394 suc csuc 6397 ωcom 7903 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-en 9004 |
This theorem is referenced by: nnfi 9233 pssnn 9234 ssnnfiOLD 9236 phplem1 9270 nneneq 9272 onomeneq 9291 onfin 9293 isinf 9323 |
Copyright terms: Public domain | W3C validator |