MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefnn Structured version   Visualization version   GIF version

Theorem enrefnn 9043
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8976). (Contributed by BTernaryTau, 31-Jul-2024.)
Assertion
Ref Expression
enrefnn (𝐴 ∈ ω → 𝐴𝐴)

Proof of Theorem enrefnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21, 1breq12d 5160 . 2 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ≈ ∅))
3 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43, 3breq12d 5160 . 2 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
5 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
65, 5breq12d 5160 . 2 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ≈ suc 𝑦))
7 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87, 7breq12d 5160 . 2 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
9 eqid 2732 . . 3 ∅ = ∅
10 en0 9009 . . 3 (∅ ≈ ∅ ↔ ∅ = ∅)
119, 10mpbir 230 . 2 ∅ ≈ ∅
12 en2sn 9037 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦})
1312el2v 3482 . . . . . 6 {𝑦} ≈ {𝑦}
1413jctr 525 . . . . 5 (𝑦𝑦 → (𝑦𝑦 ∧ {𝑦} ≈ {𝑦}))
15 nnord 7859 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
16 orddisj 6399 . . . . . . 7 (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅)
1715, 16syl 17 . . . . . 6 (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅)
1817, 17jca 512 . . . . 5 (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅))
19 unen 9042 . . . . 5 (((𝑦𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
2014, 18, 19syl2anr 597 . . . 4 ((𝑦 ∈ ω ∧ 𝑦𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
21 df-suc 6367 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
2220, 21, 213brtr4g 5181 . . 3 ((𝑦 ∈ ω ∧ 𝑦𝑦) → suc 𝑦 ≈ suc 𝑦)
2322ex 413 . 2 (𝑦 ∈ ω → (𝑦𝑦 → suc 𝑦 ≈ suc 𝑦))
242, 4, 6, 8, 11, 23finds 7885 1 (𝐴 ∈ ω → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cun 3945  cin 3946  c0 4321  {csn 4627   class class class wbr 5147  Ord word 6360  suc csuc 6363  ωcom 7851  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-om 7852  df-en 8936
This theorem is referenced by:  nnfi  9163  pssnn  9164  ssnnfiOLD  9166  phplem1  9203  nneneq  9205  onomeneq  9224  onfin  9226  isinf  9256
  Copyright terms: Public domain W3C validator