MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefnn Structured version   Visualization version   GIF version

Theorem enrefnn 9113
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 9044). (Contributed by BTernaryTau, 31-Jul-2024.)
Assertion
Ref Expression
enrefnn (𝐴 ∈ ω → 𝐴𝐴)

Proof of Theorem enrefnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21, 1breq12d 5179 . 2 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ≈ ∅))
3 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43, 3breq12d 5179 . 2 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
5 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
65, 5breq12d 5179 . 2 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ≈ suc 𝑦))
7 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87, 7breq12d 5179 . 2 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
9 eqid 2740 . . 3 ∅ = ∅
10 en0 9078 . . 3 (∅ ≈ ∅ ↔ ∅ = ∅)
119, 10mpbir 231 . 2 ∅ ≈ ∅
12 en2sn 9106 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦})
1312el2v 3495 . . . . . 6 {𝑦} ≈ {𝑦}
1413jctr 524 . . . . 5 (𝑦𝑦 → (𝑦𝑦 ∧ {𝑦} ≈ {𝑦}))
15 nnord 7911 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
16 orddisj 6433 . . . . . . 7 (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅)
1715, 16syl 17 . . . . . 6 (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅)
1817, 17jca 511 . . . . 5 (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅))
19 unen 9112 . . . . 5 (((𝑦𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
2014, 18, 19syl2anr 596 . . . 4 ((𝑦 ∈ ω ∧ 𝑦𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
21 df-suc 6401 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
2220, 21, 213brtr4g 5200 . . 3 ((𝑦 ∈ ω ∧ 𝑦𝑦) → suc 𝑦 ≈ suc 𝑦)
2322ex 412 . 2 (𝑦 ∈ ω → (𝑦𝑦 → suc 𝑦 ≈ suc 𝑦))
242, 4, 6, 8, 11, 23finds 7936 1 (𝐴 ∈ ω → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  c0 4352  {csn 4648   class class class wbr 5166  Ord word 6394  suc csuc 6397  ωcom 7903  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-om 7904  df-en 9004
This theorem is referenced by:  nnfi  9233  pssnn  9234  ssnnfiOLD  9236  phplem1  9270  nneneq  9272  onomeneq  9291  onfin  9293  isinf  9323
  Copyright terms: Public domain W3C validator