MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefnn Structured version   Visualization version   GIF version

Theorem enrefnn 8702
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg 8638). (Contributed by BTernaryTau, 31-Jul-2024.)
Assertion
Ref Expression
enrefnn (𝐴 ∈ ω → 𝐴𝐴)

Proof of Theorem enrefnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21, 1breq12d 5052 . 2 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ≈ ∅))
3 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43, 3breq12d 5052 . 2 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
5 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
65, 5breq12d 5052 . 2 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ≈ suc 𝑦))
7 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87, 7breq12d 5052 . 2 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
9 eqid 2736 . . 3 ∅ = ∅
10 en0 8669 . . 3 (∅ ≈ ∅ ↔ ∅ = ∅)
119, 10mpbir 234 . 2 ∅ ≈ ∅
12 en2sn 8696 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑦 ∈ V) → {𝑦} ≈ {𝑦})
1312el2v 3406 . . . . . 6 {𝑦} ≈ {𝑦}
1413jctr 528 . . . . 5 (𝑦𝑦 → (𝑦𝑦 ∧ {𝑦} ≈ {𝑦}))
15 nnord 7630 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
16 orddisj 6229 . . . . . . 7 (Ord 𝑦 → (𝑦 ∩ {𝑦}) = ∅)
1715, 16syl 17 . . . . . 6 (𝑦 ∈ ω → (𝑦 ∩ {𝑦}) = ∅)
1817, 17jca 515 . . . . 5 (𝑦 ∈ ω → ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅))
19 unen 8701 . . . . 5 (((𝑦𝑦 ∧ {𝑦} ≈ {𝑦}) ∧ ((𝑦 ∩ {𝑦}) = ∅ ∧ (𝑦 ∩ {𝑦}) = ∅)) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
2014, 18, 19syl2anr 600 . . . 4 ((𝑦 ∈ ω ∧ 𝑦𝑦) → (𝑦 ∪ {𝑦}) ≈ (𝑦 ∪ {𝑦}))
21 df-suc 6197 . . . 4 suc 𝑦 = (𝑦 ∪ {𝑦})
2220, 21, 213brtr4g 5073 . . 3 ((𝑦 ∈ ω ∧ 𝑦𝑦) → suc 𝑦 ≈ suc 𝑦)
2322ex 416 . 2 (𝑦 ∈ ω → (𝑦𝑦 → suc 𝑦 ≈ suc 𝑦))
242, 4, 6, 8, 11, 23finds 7654 1 (𝐴 ∈ ω → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cun 3851  cin 3852  c0 4223  {csn 4527   class class class wbr 5039  Ord word 6190  suc csuc 6193  ωcom 7622  cen 8601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-om 7623  df-en 8605
This theorem is referenced by:  nnfi  8823  pssnn  8824  ssnnfiOLD  8826
  Copyright terms: Public domain W3C validator