MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1ALT Structured version   Visualization version   GIF version

Theorem tfr1ALT 8396
Description: Alternate proof of tfr1 8393 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1ALT 𝐹 Fn On

Proof of Theorem tfr1ALT
StepHypRef Expression
1 epweon 7758 . 2 E We On
2 epse 5658 . 2 E Se On
3 tfrALT.1 . . . 4 𝐹 = recs(𝐺)
4 df-recs 8367 . . . 4 recs(𝐺) = wrecs( E , On, 𝐺)
53, 4eqtri 2760 . . 3 𝐹 = wrecs( E , On, 𝐺)
65wfr1 8331 . 2 (( E We On ∧ E Se On) → 𝐹 Fn On)
71, 2, 6mp2an 690 1 𝐹 Fn On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   E cep 5578   Se wse 5628   We wwe 5629  Oncon0 6361   Fn wfn 6535  wrecscwrecs 8292  recscrecs 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-frecs 8262  df-wrecs 8293  df-recs 8367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator