MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1ALT Structured version   Visualization version   GIF version

Theorem tfr1ALT 8441
Description: Alternate proof of tfr1 8438 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1ALT 𝐹 Fn On

Proof of Theorem tfr1ALT
StepHypRef Expression
1 epweon 7796 . 2 E We On
2 epse 5666 . 2 E Se On
3 tfrALT.1 . . . 4 𝐹 = recs(𝐺)
4 df-recs 8412 . . . 4 recs(𝐺) = wrecs( E , On, 𝐺)
53, 4eqtri 2764 . . 3 𝐹 = wrecs( E , On, 𝐺)
65wfr1 8376 . 2 (( E We On ∧ E Se On) → 𝐹 Fn On)
71, 2, 6mp2an 692 1 𝐹 Fn On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   E cep 5582   Se wse 5634   We wwe 5635  Oncon0 6383   Fn wfn 6555  wrecscwrecs 8337  recscrecs 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-frecs 8307  df-wrecs 8338  df-recs 8412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator