| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr1 8416 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1ALT | ⊢ 𝐹 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7774 | . 2 ⊢ E We On | |
| 2 | epse 5641 | . 2 ⊢ E Se On | |
| 3 | tfrALT.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | df-recs 8390 | . . . 4 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 5 | 3, 4 | eqtri 2759 | . . 3 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 6 | 5 | wfr1 8354 | . 2 ⊢ (( E We On ∧ E Se On) → 𝐹 Fn On) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 𝐹 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 E cep 5557 Se wse 5609 We wwe 5610 Oncon0 6357 Fn wfn 6531 wrecscwrecs 8315 recscrecs 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-frecs 8285 df-wrecs 8316 df-recs 8390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |