MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3ALT Structured version   Visualization version   GIF version

Theorem tfr3ALT 8029
Description: Alternate proof of tfr3 8026 using well-founded recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr3ALT ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐹

Proof of Theorem tfr3ALT
StepHypRef Expression
1 predon 7494 . . . . . . 7 (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥)
21reseq2d 5852 . . . . . 6 (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵𝑥))
32fveq2d 6671 . . . . 5 (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵𝑥)))
43eqeq2d 2837 . . . 4 (𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵𝑥) = (𝐺‘(𝐵𝑥))))
54ralbiia 3169 . . 3 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)))
6 epweon 7485 . . . 4 E We On
7 epse 5537 . . . 4 E Se On
8 tfrALT.1 . . . . 5 𝐹 = recs(𝐺)
9 df-recs 7999 . . . . 5 recs(𝐺) = wrecs( E , On, 𝐺)
108, 9eqtri 2849 . . . 4 𝐹 = wrecs( E , On, 𝐺)
116, 7, 10wfr3 7966 . . 3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵)
125, 11sylan2br 594 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐹 = 𝐵)
1312eqcomd 2832 1 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143   E cep 5463  cres 5556  Predcpred 6145  Oncon0 6189   Fn wfn 6347  cfv 6352  wrecscwrecs 7937  recscrecs 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-wrecs 7938  df-recs 7999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator