MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3ALT Structured version   Visualization version   GIF version

Theorem tfr3ALT 8416
Description: Alternate proof of tfr3 8413 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr3ALT ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐹

Proof of Theorem tfr3ALT
StepHypRef Expression
1 predon 7780 . . . . . . 7 (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥)
21reseq2d 5966 . . . . . 6 (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵𝑥))
32fveq2d 6880 . . . . 5 (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵𝑥)))
43eqeq2d 2746 . . . 4 (𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵𝑥) = (𝐺‘(𝐵𝑥))))
54ralbiia 3080 . . 3 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)))
6 epweon 7769 . . . 4 E We On
7 epse 5636 . . . 4 E Se On
8 tfrALT.1 . . . . . 6 𝐹 = recs(𝐺)
9 df-recs 8385 . . . . . 6 recs(𝐺) = wrecs( E , On, 𝐺)
108, 9eqtri 2758 . . . . 5 𝐹 = wrecs( E , On, 𝐺)
1110wfr3 8351 . . . 4 ((( E We On ∧ E Se On) ∧ (𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))))) → 𝐹 = 𝐵)
126, 7, 11mpanl12 702 . . 3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵)
135, 12sylan2br 595 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐹 = 𝐵)
1413eqcomd 2741 1 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   E cep 5552   Se wse 5604   We wwe 5605  cres 5656  Predcpred 6289  Oncon0 6352   Fn wfn 6526  cfv 6531  wrecscwrecs 8310  recscrecs 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator