![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr3ALT | Structured version Visualization version GIF version |
Description: Alternate proof of tfr3 8413 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr3ALT | ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predon 7782 | . . . . . . 7 ⊢ (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥) | |
2 | 1 | reseq2d 5979 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵 ↾ 𝑥)) |
3 | 2 | fveq2d 6895 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵 ↾ 𝑥))) |
4 | 3 | eqeq2d 2739 | . . . 4 ⊢ (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
5 | 4 | ralbiia 3087 | . . 3 ⊢ (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
6 | epweon 7771 | . . . 4 ⊢ E We On | |
7 | epse 5655 | . . . 4 ⊢ E Se On | |
8 | tfrALT.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
9 | df-recs 8385 | . . . . . 6 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
10 | 8, 9 | eqtri 2756 | . . . . 5 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
11 | 10 | wfr3 8351 | . . . 4 ⊢ ((( E We On ∧ E Se On) ∧ (𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))))) → 𝐹 = 𝐵) |
12 | 6, 7, 11 | mpanl12 701 | . . 3 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵) |
13 | 5, 12 | sylan2br 594 | . 2 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐹 = 𝐵) |
14 | 13 | eqcomd 2734 | 1 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 E cep 5575 Se wse 5625 We wwe 5626 ↾ cres 5674 Predcpred 6298 Oncon0 6363 Fn wfn 6537 ‘cfv 6542 wrecscwrecs 8310 recscrecs 8384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |