| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr3ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr3 8344 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr3ALT | ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predon 7742 | . . . . . . 7 ⊢ (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥) | |
| 2 | 1 | reseq2d 5939 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵 ↾ 𝑥)) |
| 3 | 2 | fveq2d 6844 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵 ↾ 𝑥))) |
| 4 | 3 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
| 5 | 4 | ralbiia 3073 | . . 3 ⊢ (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
| 6 | epweon 7731 | . . . 4 ⊢ E We On | |
| 7 | epse 5613 | . . . 4 ⊢ E Se On | |
| 8 | tfrALT.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
| 9 | df-recs 8317 | . . . . . 6 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 10 | 8, 9 | eqtri 2752 | . . . . 5 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 11 | 10 | wfr3 8284 | . . . 4 ⊢ ((( E We On ∧ E Se On) ∧ (𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))))) → 𝐹 = 𝐵) |
| 12 | 6, 7, 11 | mpanl12 702 | . . 3 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵) |
| 13 | 5, 12 | sylan2br 595 | . 2 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐹 = 𝐵) |
| 14 | 13 | eqcomd 2735 | 1 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 E cep 5530 Se wse 5582 We wwe 5583 ↾ cres 5633 Predcpred 6261 Oncon0 6320 Fn wfn 6494 ‘cfv 6499 wrecscwrecs 8267 recscrecs 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |