| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr3ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr3 8318 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr3ALT | ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predon 7719 | . . . . . . 7 ⊢ (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥) | |
| 2 | 1 | reseq2d 5927 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵 ↾ 𝑥)) |
| 3 | 2 | fveq2d 6826 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵 ↾ 𝑥))) |
| 4 | 3 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
| 5 | 4 | ralbiia 3076 | . . 3 ⊢ (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
| 6 | epweon 7708 | . . . 4 ⊢ E We On | |
| 7 | epse 5596 | . . . 4 ⊢ E Se On | |
| 8 | tfrALT.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
| 9 | df-recs 8291 | . . . . . 6 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 10 | 8, 9 | eqtri 2754 | . . . . 5 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 11 | 10 | wfr3 8258 | . . . 4 ⊢ ((( E We On ∧ E Se On) ∧ (𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))))) → 𝐹 = 𝐵) |
| 12 | 6, 7, 11 | mpanl12 702 | . . 3 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵) |
| 13 | 5, 12 | sylan2br 595 | . 2 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐹 = 𝐵) |
| 14 | 13 | eqcomd 2737 | 1 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 E cep 5513 Se wse 5565 We wwe 5566 ↾ cres 5616 Predcpred 6247 Oncon0 6306 Fn wfn 6476 ‘cfv 6481 wrecscwrecs 8241 recscrecs 8290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |