| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr2 8317 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2ALT | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7708 | . . 3 ⊢ E We On | |
| 2 | epse 5598 | . . 3 ⊢ E Se On | |
| 3 | tfrALT.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 4 | df-recs 8291 | . . . . 5 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 5 | 3, 4 | eqtri 2754 | . . . 4 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 6 | 5 | wfr2 8257 | . . 3 ⊢ ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 7 | 1, 2, 6 | mpanl12 702 | . 2 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 8 | predon 7719 | . . . 4 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | |
| 9 | 8 | reseq2d 5928 | . . 3 ⊢ (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹 ↾ 𝐴)) |
| 10 | 9 | fveq2d 6826 | . 2 ⊢ (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 11 | 7, 10 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 E cep 5515 Se wse 5567 We wwe 5568 ↾ cres 5618 Predcpred 6247 Oncon0 6306 ‘cfv 6481 wrecscwrecs 8241 recscrecs 8290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |