MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2ALT Structured version   Visualization version   GIF version

Theorem tfr2ALT 8203
Description: Alternate proof of tfr2 8200 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2ALT (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2ALT
StepHypRef Expression
1 epweon 7603 . . 3 E We On
2 epse 5563 . . 3 E Se On
3 tfrALT.1 . . . . 5 𝐹 = recs(𝐺)
4 df-recs 8173 . . . . 5 recs(𝐺) = wrecs( E , On, 𝐺)
53, 4eqtri 2766 . . . 4 𝐹 = wrecs( E , On, 𝐺)
65wfr2 8138 . . 3 ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
71, 2, 6mpanl12 698 . 2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
8 predon 7612 . . . 4 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
98reseq2d 5880 . . 3 (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹𝐴))
109fveq2d 6760 . 2 (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹𝐴)))
117, 10eqtrd 2778 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   E cep 5485   Se wse 5533   We wwe 5534  cres 5582  Predcpred 6190  Oncon0 6251  cfv 6418  wrecscwrecs 8098  recscrecs 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator