MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2ALT Structured version   Visualization version   GIF version

Theorem tfr2ALT 8415
Description: Alternate proof of tfr2 8412 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2ALT (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2ALT
StepHypRef Expression
1 epweon 7769 . . 3 E We On
2 epse 5636 . . 3 E Se On
3 tfrALT.1 . . . . 5 𝐹 = recs(𝐺)
4 df-recs 8385 . . . . 5 recs(𝐺) = wrecs( E , On, 𝐺)
53, 4eqtri 2758 . . . 4 𝐹 = wrecs( E , On, 𝐺)
65wfr2 8350 . . 3 ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
71, 2, 6mpanl12 702 . 2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
8 predon 7780 . . . 4 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
98reseq2d 5966 . . 3 (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹𝐴))
109fveq2d 6880 . 2 (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹𝐴)))
117, 10eqtrd 2770 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   E cep 5552   Se wse 5604   We wwe 5605  cres 5656  Predcpred 6289  Oncon0 6352  cfv 6531  wrecscwrecs 8310  recscrecs 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator