MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2ALT Structured version   Visualization version   GIF version

Theorem tfr2ALT 8326
Description: Alternate proof of tfr2 8323 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
tfrALT.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2ALT (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2ALT
StepHypRef Expression
1 epweon 7714 . . 3 E We On
2 epse 5601 . . 3 E Se On
3 tfrALT.1 . . . . 5 𝐹 = recs(𝐺)
4 df-recs 8297 . . . . 5 recs(𝐺) = wrecs( E , On, 𝐺)
53, 4eqtri 2756 . . . 4 𝐹 = wrecs( E , On, 𝐺)
65wfr2 8263 . . 3 ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
71, 2, 6mpanl12 702 . 2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))))
8 predon 7725 . . . 4 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
98reseq2d 5932 . . 3 (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹𝐴))
109fveq2d 6832 . 2 (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹𝐴)))
117, 10eqtrd 2768 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   E cep 5518   Se wse 5570   We wwe 5571  cres 5621  Predcpred 6252  Oncon0 6311  cfv 6486  wrecscwrecs 8247  recscrecs 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator