| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr2 8366 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2ALT | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7751 | . . 3 ⊢ E We On | |
| 2 | epse 5620 | . . 3 ⊢ E Se On | |
| 3 | tfrALT.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 4 | df-recs 8340 | . . . . 5 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 5 | 3, 4 | eqtri 2752 | . . . 4 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 6 | 5 | wfr2 8306 | . . 3 ⊢ ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 7 | 1, 2, 6 | mpanl12 702 | . 2 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 8 | predon 7762 | . . . 4 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | |
| 9 | 8 | reseq2d 5950 | . . 3 ⊢ (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹 ↾ 𝐴)) |
| 10 | 9 | fveq2d 6862 | . 2 ⊢ (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 11 | 7, 10 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 E cep 5537 Se wse 5589 We wwe 5590 ↾ cres 5640 Predcpred 6273 Oncon0 6332 ‘cfv 6511 wrecscwrecs 8290 recscrecs 8339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |