Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfr2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of tfr2 8213 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr2ALT | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7616 | . . 3 ⊢ E We On | |
2 | epse 5571 | . . 3 ⊢ E Se On | |
3 | tfrALT.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
4 | df-recs 8186 | . . . . 5 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
5 | 3, 4 | eqtri 2767 | . . . 4 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
6 | 5 | wfr2 8151 | . . 3 ⊢ ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
7 | 1, 2, 6 | mpanl12 698 | . 2 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
8 | predon 7625 | . . . 4 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | |
9 | 8 | reseq2d 5888 | . . 3 ⊢ (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹 ↾ 𝐴)) |
10 | 9 | fveq2d 6772 | . 2 ⊢ (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹 ↾ 𝐴))) |
11 | 7, 10 | eqtrd 2779 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 E cep 5493 Se wse 5541 We wwe 5542 ↾ cres 5590 Predcpred 6198 Oncon0 6263 ‘cfv 6430 wrecscwrecs 8111 recscrecs 8185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |