| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of tfr2 8412 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2ALT | ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7769 | . . 3 ⊢ E We On | |
| 2 | epse 5636 | . . 3 ⊢ E Se On | |
| 3 | tfrALT.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 4 | df-recs 8385 | . . . . 5 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 5 | 3, 4 | eqtri 2758 | . . . 4 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
| 6 | 5 | wfr2 8350 | . . 3 ⊢ ((( E We On ∧ E Se On) ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 7 | 1, 2, 6 | mpanl12 702 | . 2 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴)))) |
| 8 | predon 7780 | . . . 4 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | |
| 9 | 8 | reseq2d 5966 | . . 3 ⊢ (𝐴 ∈ On → (𝐹 ↾ Pred( E , On, 𝐴)) = (𝐹 ↾ 𝐴)) |
| 10 | 9 | fveq2d 6880 | . 2 ⊢ (𝐴 ∈ On → (𝐺‘(𝐹 ↾ Pred( E , On, 𝐴))) = (𝐺‘(𝐹 ↾ 𝐴))) |
| 11 | 7, 10 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 E cep 5552 Se wse 5604 We wwe 5605 ↾ cres 5656 Predcpred 6289 Oncon0 6352 ‘cfv 6531 wrecscwrecs 8310 recscrecs 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |