MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt0elex Structured version   Visualization version   GIF version

Theorem hashgt0elex 14342
Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
Assertion
Ref Expression
hashgt0elex ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥𝑉)
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem hashgt0elex
StepHypRef Expression
1 alnex 1781 . . . . . . . 8 (∀𝑥 ¬ 𝑥𝑉 ↔ ¬ ∃𝑥 𝑥𝑉)
2 eq0 4309 . . . . . . . . . 10 (𝑉 = ∅ ↔ ∀𝑥 ¬ 𝑥𝑉)
32biimpri 228 . . . . . . . . 9 (∀𝑥 ¬ 𝑥𝑉𝑉 = ∅)
43a1d 25 . . . . . . . 8 (∀𝑥 ¬ 𝑥𝑉 → (𝑉𝑊𝑉 = ∅))
51, 4sylbir 235 . . . . . . 7 (¬ ∃𝑥 𝑥𝑉 → (𝑉𝑊𝑉 = ∅))
65impcom 407 . . . . . 6 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → 𝑉 = ∅)
7 hashle00 14341 . . . . . . 7 (𝑉𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅))
87adantr 480 . . . . . 6 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅))
96, 8mpbird 257 . . . . 5 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → (♯‘𝑉) ≤ 0)
10 hashxrcl 14298 . . . . . . . 8 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
11 0xr 11197 . . . . . . . 8 0 ∈ ℝ*
12 xrlenlt 11215 . . . . . . . 8 (((♯‘𝑉) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉)))
1310, 11, 12sylancl 586 . . . . . . 7 (𝑉𝑊 → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉)))
1413bicomd 223 . . . . . 6 (𝑉𝑊 → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0))
1514adantr 480 . . . . 5 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0))
169, 15mpbird 257 . . . 4 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → ¬ 0 < (♯‘𝑉))
1716ex 412 . . 3 (𝑉𝑊 → (¬ ∃𝑥 𝑥𝑉 → ¬ 0 < (♯‘𝑉)))
1817con4d 115 . 2 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑥 𝑥𝑉))
1918imp 406 1 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  c0 4292   class class class wbr 5102  cfv 6499  0cc0 11044  *cxr 11183   < clt 11184  cle 11185  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  hashgt0elexb  14343  hashgt23el  14365  fi1uzind  14448  brfi1indALT  14451
  Copyright terms: Public domain W3C validator