MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt0elex Structured version   Visualization version   GIF version

Theorem hashgt0elex 14366
Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
Assertion
Ref Expression
hashgt0elex ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥𝑉)
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem hashgt0elex
StepHypRef Expression
1 alnex 1775 . . . . . . . 8 (∀𝑥 ¬ 𝑥𝑉 ↔ ¬ ∃𝑥 𝑥𝑉)
2 eq0 4338 . . . . . . . . . 10 (𝑉 = ∅ ↔ ∀𝑥 ¬ 𝑥𝑉)
32biimpri 227 . . . . . . . . 9 (∀𝑥 ¬ 𝑥𝑉𝑉 = ∅)
43a1d 25 . . . . . . . 8 (∀𝑥 ¬ 𝑥𝑉 → (𝑉𝑊𝑉 = ∅))
51, 4sylbir 234 . . . . . . 7 (¬ ∃𝑥 𝑥𝑉 → (𝑉𝑊𝑉 = ∅))
65impcom 407 . . . . . 6 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → 𝑉 = ∅)
7 hashle00 14365 . . . . . . 7 (𝑉𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅))
87adantr 480 . . . . . 6 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅))
96, 8mpbird 257 . . . . 5 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → (♯‘𝑉) ≤ 0)
10 hashxrcl 14322 . . . . . . . 8 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
11 0xr 11265 . . . . . . . 8 0 ∈ ℝ*
12 xrlenlt 11283 . . . . . . . 8 (((♯‘𝑉) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉)))
1310, 11, 12sylancl 585 . . . . . . 7 (𝑉𝑊 → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉)))
1413bicomd 222 . . . . . 6 (𝑉𝑊 → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0))
1514adantr 480 . . . . 5 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0))
169, 15mpbird 257 . . . 4 ((𝑉𝑊 ∧ ¬ ∃𝑥 𝑥𝑉) → ¬ 0 < (♯‘𝑉))
1716ex 412 . . 3 (𝑉𝑊 → (¬ ∃𝑥 𝑥𝑉 → ¬ 0 < (♯‘𝑉)))
1817con4d 115 . 2 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑥 𝑥𝑉))
1918imp 406 1 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  c0 4317   class class class wbr 5141  cfv 6537  0cc0 11112  *cxr 11251   < clt 11252  cle 11253  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by:  hashgt0elexb  14367  hashgt23el  14389  fi1uzind  14464  brfi1indALT  14467
  Copyright terms: Public domain W3C validator