![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashgt0elex | Structured version Visualization version GIF version |
Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
Ref | Expression |
---|---|
hashgt0elex | ⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1783 | . . . . . . . 8 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝑉 ↔ ¬ ∃𝑥 𝑥 ∈ 𝑉) | |
2 | eq0 4339 | . . . . . . . . . 10 ⊢ (𝑉 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝑉) | |
3 | 2 | biimpri 227 | . . . . . . . . 9 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝑉 → 𝑉 = ∅) |
4 | 3 | a1d 25 | . . . . . . . 8 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝑉 → (𝑉 ∈ 𝑊 → 𝑉 = ∅)) |
5 | 1, 4 | sylbir 234 | . . . . . . 7 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝑉 → (𝑉 ∈ 𝑊 → 𝑉 = ∅)) |
6 | 5 | impcom 408 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ ∃𝑥 𝑥 ∈ 𝑉) → 𝑉 = ∅) |
7 | hashle00 14342 | . . . . . . 7 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) | |
8 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ ∃𝑥 𝑥 ∈ 𝑉) → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) |
9 | 6, 8 | mpbird 256 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ ∃𝑥 𝑥 ∈ 𝑉) → (♯‘𝑉) ≤ 0) |
10 | hashxrcl 14299 | . . . . . . . 8 ⊢ (𝑉 ∈ 𝑊 → (♯‘𝑉) ∈ ℝ*) | |
11 | 0xr 11243 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
12 | xrlenlt 11261 | . . . . . . . 8 ⊢ (((♯‘𝑉) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉))) | |
13 | 10, 11, 12 | sylancl 586 | . . . . . . 7 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ ¬ 0 < (♯‘𝑉))) |
14 | 13 | bicomd 222 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0)) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ ∃𝑥 𝑥 ∈ 𝑉) → (¬ 0 < (♯‘𝑉) ↔ (♯‘𝑉) ≤ 0)) |
16 | 9, 15 | mpbird 256 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ ∃𝑥 𝑥 ∈ 𝑉) → ¬ 0 < (♯‘𝑉)) |
17 | 16 | ex 413 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (¬ ∃𝑥 𝑥 ∈ 𝑉 → ¬ 0 < (♯‘𝑉))) |
18 | 17 | con4d 115 | . 2 ⊢ (𝑉 ∈ 𝑊 → (0 < (♯‘𝑉) → ∃𝑥 𝑥 ∈ 𝑉)) |
19 | 18 | imp 407 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∅c0 4318 class class class wbr 5141 ‘cfv 6532 0cc0 11092 ℝ*cxr 11229 < clt 11230 ≤ cle 11231 ♯chash 14272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-fz 13467 df-hash 14273 |
This theorem is referenced by: hashgt0elexb 14344 hashgt23el 14366 fi1uzind 14440 brfi1indALT 14443 |
Copyright terms: Public domain | W3C validator |