MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunressuc Structured version   Visualization version   GIF version

Theorem eqfunressuc 7397
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunressuc (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))

Proof of Theorem eqfunressuc
StepHypRef Expression
1 eqfunresadj 7396 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋})))
2 df-suc 6401 . . 3 suc 𝑋 = (𝑋 ∪ {𝑋})
32reseq2i 6006 . 2 (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋}))
42reseq2i 6006 . 2 (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋}))
51, 3, 43eqtr4g 2805 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cun 3974  {csn 4648  dom cdm 5700  cres 5702  suc csuc 6397  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  nosupbnd1lem5  27775  noinfbnd1lem5  27790
  Copyright terms: Public domain W3C validator