MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunressuc Structured version   Visualization version   GIF version

Theorem eqfunressuc 7338
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunressuc (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))

Proof of Theorem eqfunressuc
StepHypRef Expression
1 eqfunresadj 7337 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋})))
2 df-suc 6340 . . 3 suc 𝑋 = (𝑋 ∪ {𝑋})
32reseq2i 5949 . 2 (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋}))
42reseq2i 5949 . 2 (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋}))
51, 3, 43eqtr4g 2790 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3914  {csn 4591  dom cdm 5640  cres 5642  suc csuc 6336  Fun wfun 6507  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521
This theorem is referenced by:  nosupbnd1lem5  27630  noinfbnd1lem5  27645
  Copyright terms: Public domain W3C validator