![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfunressuc | Structured version Visualization version GIF version |
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
eqfunressuc | ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfunresadj 7380 | . 2 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋}))) | |
2 | df-suc 6392 | . . 3 ⊢ suc 𝑋 = (𝑋 ∪ {𝑋}) | |
3 | 2 | reseq2i 5997 | . 2 ⊢ (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋})) |
4 | 2 | reseq2i 5997 | . 2 ⊢ (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋})) |
5 | 1, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 {csn 4631 dom cdm 5689 ↾ cres 5691 suc csuc 6388 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: nosupbnd1lem5 27772 noinfbnd1lem5 27787 |
Copyright terms: Public domain | W3C validator |