Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqfunressuc | Structured version Visualization version GIF version |
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
eqfunressuc | ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfunresadj 33309 | . 2 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋}))) | |
2 | df-suc 6178 | . . 3 ⊢ suc 𝑋 = (𝑋 ∪ {𝑋}) | |
3 | 2 | reseq2i 5822 | . 2 ⊢ (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋})) |
4 | 2 | reseq2i 5822 | . 2 ⊢ (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋})) |
5 | 1, 3, 4 | 3eqtr4g 2798 | 1 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∪ cun 3841 {csn 4516 dom cdm 5525 ↾ cres 5527 suc csuc 6174 Fun wfun 6333 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-res 5537 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-fv 6347 |
This theorem is referenced by: nosupbnd1lem5 33558 noinfbnd1lem5 33573 |
Copyright terms: Public domain | W3C validator |