MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunressuc Structured version   Visualization version   GIF version

Theorem eqfunressuc 7381
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunressuc (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))

Proof of Theorem eqfunressuc
StepHypRef Expression
1 eqfunresadj 7380 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋})))
2 df-suc 6392 . . 3 suc 𝑋 = (𝑋 ∪ {𝑋})
32reseq2i 5997 . 2 (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋}))
42reseq2i 5997 . 2 (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋}))
51, 3, 43eqtr4g 2800 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  {csn 4631  dom cdm 5689  cres 5691  suc csuc 6388  Fun wfun 6557  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  nosupbnd1lem5  27772  noinfbnd1lem5  27787
  Copyright terms: Public domain W3C validator