![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfunressuc | Structured version Visualization version GIF version |
Description: Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
eqfunressuc | ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfunresadj 7306 | . 2 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ (𝑋 ∪ {𝑋})) = (𝐺 ↾ (𝑋 ∪ {𝑋}))) | |
2 | df-suc 6324 | . . 3 ⊢ suc 𝑋 = (𝑋 ∪ {𝑋}) | |
3 | 2 | reseq2i 5935 | . 2 ⊢ (𝐹 ↾ suc 𝑋) = (𝐹 ↾ (𝑋 ∪ {𝑋})) |
4 | 2 | reseq2i 5935 | . 2 ⊢ (𝐺 ↾ suc 𝑋) = (𝐺 ↾ (𝑋 ∪ {𝑋})) |
5 | 1, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∪ cun 3909 {csn 4587 dom cdm 5634 ↾ cres 5636 suc csuc 6320 Fun wfun 6491 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-res 5646 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 |
This theorem is referenced by: nosupbnd1lem5 27063 noinfbnd1lem5 27078 |
Copyright terms: Public domain | W3C validator |