MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnfbas Structured version   Visualization version   GIF version

Theorem opnfbas 23566
Description: The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Hypothesis
Ref Expression
opnfbas.1 𝑋 = 𝐽
Assertion
Ref Expression
opnfbas ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem opnfbas
Dummy variables 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4076 . . . 4 {𝑥𝐽𝑆𝑥} ⊆ 𝐽
2 opnfbas.1 . . . . . 6 𝑋 = 𝐽
32eqimss2i 4042 . . . . 5 𝐽𝑋
4 sspwuni 5102 . . . . 5 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
53, 4mpbir 230 . . . 4 𝐽 ⊆ 𝒫 𝑋
61, 5sstri 3990 . . 3 {𝑥𝐽𝑆𝑥} ⊆ 𝒫 𝑋
76a1i 11 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ⊆ 𝒫 𝑋)
82topopn 22628 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
98anim1i 613 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋𝐽𝑆𝑋))
1093adant3 1130 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋𝐽𝑆𝑋))
11 sseq2 4007 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
1211elrab 3682 . . . . 5 (𝑋 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑋𝐽𝑆𝑋))
1310, 12sylibr 233 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝑋 ∈ {𝑥𝐽𝑆𝑥})
1413ne0d 4334 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ≠ ∅)
15 ss0 4397 . . . . . . 7 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1615necon3ai 2963 . . . . . 6 (𝑆 ≠ ∅ → ¬ 𝑆 ⊆ ∅)
17163ad2ant3 1133 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ¬ 𝑆 ⊆ ∅)
1817intnand 487 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ¬ (∅ ∈ 𝐽𝑆 ⊆ ∅))
19 df-nel 3045 . . . . 5 (∅ ∉ {𝑥𝐽𝑆𝑥} ↔ ¬ ∅ ∈ {𝑥𝐽𝑆𝑥})
20 sseq2 4007 . . . . . . 7 (𝑥 = ∅ → (𝑆𝑥𝑆 ⊆ ∅))
2120elrab 3682 . . . . . 6 (∅ ∈ {𝑥𝐽𝑆𝑥} ↔ (∅ ∈ 𝐽𝑆 ⊆ ∅))
2221notbii 319 . . . . 5 (¬ ∅ ∈ {𝑥𝐽𝑆𝑥} ↔ ¬ (∅ ∈ 𝐽𝑆 ⊆ ∅))
2319, 22bitr2i 275 . . . 4 (¬ (∅ ∈ 𝐽𝑆 ⊆ ∅) ↔ ∅ ∉ {𝑥𝐽𝑆𝑥})
2418, 23sylib 217 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ∅ ∉ {𝑥𝐽𝑆𝑥})
25 sseq2 4007 . . . . . . 7 (𝑥 = 𝑟 → (𝑆𝑥𝑆𝑟))
2625elrab 3682 . . . . . 6 (𝑟 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑟𝐽𝑆𝑟))
27 sseq2 4007 . . . . . . 7 (𝑥 = 𝑠 → (𝑆𝑥𝑆𝑠))
2827elrab 3682 . . . . . 6 (𝑠 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑠𝐽𝑆𝑠))
2926, 28anbi12i 625 . . . . 5 ((𝑟 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑠 ∈ {𝑥𝐽𝑆𝑥}) ↔ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠)))
30 simpl 481 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → 𝐽 ∈ Top)
31 simprll 775 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → 𝑟𝐽)
32 simprrl 777 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → 𝑠𝐽)
33 inopn 22621 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑟𝐽𝑠𝐽) → (𝑟𝑠) ∈ 𝐽)
3430, 31, 32, 33syl3anc 1369 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → (𝑟𝑠) ∈ 𝐽)
35 ssin 4229 . . . . . . . . . . . . 13 ((𝑆𝑟𝑆𝑠) ↔ 𝑆 ⊆ (𝑟𝑠))
3635biimpi 215 . . . . . . . . . . . 12 ((𝑆𝑟𝑆𝑠) → 𝑆 ⊆ (𝑟𝑠))
3736ad2ant2l 742 . . . . . . . . . . 11 (((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠)) → 𝑆 ⊆ (𝑟𝑠))
3837adantl 480 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → 𝑆 ⊆ (𝑟𝑠))
3934, 38jca 510 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → ((𝑟𝑠) ∈ 𝐽𝑆 ⊆ (𝑟𝑠)))
40393ad2antl1 1183 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → ((𝑟𝑠) ∈ 𝐽𝑆 ⊆ (𝑟𝑠)))
41 sseq2 4007 . . . . . . . . 9 (𝑥 = (𝑟𝑠) → (𝑆𝑥𝑆 ⊆ (𝑟𝑠)))
4241elrab 3682 . . . . . . . 8 ((𝑟𝑠) ∈ {𝑥𝐽𝑆𝑥} ↔ ((𝑟𝑠) ∈ 𝐽𝑆 ⊆ (𝑟𝑠)))
4340, 42sylibr 233 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → (𝑟𝑠) ∈ {𝑥𝐽𝑆𝑥})
44 ssid 4003 . . . . . . 7 (𝑟𝑠) ⊆ (𝑟𝑠)
45 sseq1 4006 . . . . . . . 8 (𝑡 = (𝑟𝑠) → (𝑡 ⊆ (𝑟𝑠) ↔ (𝑟𝑠) ⊆ (𝑟𝑠)))
4645rspcev 3611 . . . . . . 7 (((𝑟𝑠) ∈ {𝑥𝐽𝑆𝑥} ∧ (𝑟𝑠) ⊆ (𝑟𝑠)) → ∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠))
4743, 44, 46sylancl 584 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) ∧ ((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠))) → ∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠))
4847ex 411 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (((𝑟𝐽𝑆𝑟) ∧ (𝑠𝐽𝑆𝑠)) → ∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))
4929, 48biimtrid 241 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑟 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑠 ∈ {𝑥𝐽𝑆𝑥}) → ∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))
5049ralrimivv 3196 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ∀𝑟 ∈ {𝑥𝐽𝑆𝑥}∀𝑠 ∈ {𝑥𝐽𝑆𝑥}∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠))
5114, 24, 503jca 1126 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ({𝑥𝐽𝑆𝑥} ≠ ∅ ∧ ∅ ∉ {𝑥𝐽𝑆𝑥} ∧ ∀𝑟 ∈ {𝑥𝐽𝑆𝑥}∀𝑠 ∈ {𝑥𝐽𝑆𝑥}∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))
52 isfbas2 23559 . . . 4 (𝑋𝐽 → ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) ↔ ({𝑥𝐽𝑆𝑥} ⊆ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ≠ ∅ ∧ ∅ ∉ {𝑥𝐽𝑆𝑥} ∧ ∀𝑟 ∈ {𝑥𝐽𝑆𝑥}∀𝑠 ∈ {𝑥𝐽𝑆𝑥}∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))))
538, 52syl 17 . . 3 (𝐽 ∈ Top → ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) ↔ ({𝑥𝐽𝑆𝑥} ⊆ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ≠ ∅ ∧ ∅ ∉ {𝑥𝐽𝑆𝑥} ∧ ∀𝑟 ∈ {𝑥𝐽𝑆𝑥}∀𝑠 ∈ {𝑥𝐽𝑆𝑥}∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))))
54533ad2ant1 1131 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) ↔ ({𝑥𝐽𝑆𝑥} ⊆ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ≠ ∅ ∧ ∅ ∉ {𝑥𝐽𝑆𝑥} ∧ ∀𝑟 ∈ {𝑥𝐽𝑆𝑥}∀𝑠 ∈ {𝑥𝐽𝑆𝑥}∃𝑡 ∈ {𝑥𝐽𝑆𝑥}𝑡 ⊆ (𝑟𝑠)))))
557, 51, 54mpbir2and 709 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wnel 3044  wral 3059  wrex 3068  {crab 3430  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601   cuni 4907  cfv 6542  fBascfbas 21132  Topctop 22615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-fbas 21141  df-top 22616
This theorem is referenced by:  neifg  35559
  Copyright terms: Public domain W3C validator