| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
(ℤ≥‘0)) |
| 2 | | nn0uz 12920 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
| 3 | 1, 2 | eleqtrrdi 2852 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
ℕ0) |
| 4 | | elnn0 12528 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
| 5 | 3, 4 | sylib 218 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
| 6 | | nnnn0 12533 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 8 | | eftval.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| 9 | 8 | eftval 16112 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 10 | 7, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 11 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑𝑘) = (0↑𝑘)) |
| 12 | | 0exp 14138 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(0↑𝑘) =
0) |
| 13 | 11, 12 | sylan9eq 2797 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) = 0) |
| 14 | 13 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) |
| 15 | | faccl 14322 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 16 | | nncn 12274 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
∈ ℂ) |
| 17 | | nnne0 12300 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
≠ 0) |
| 18 | 16, 17 | div0d 12042 |
. . . . . . . 8
⊢
((!‘𝑘) ∈
ℕ → (0 / (!‘𝑘)) = 0) |
| 19 | 7, 15, 18 | 3syl 18 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0) |
| 20 | 10, 14, 19 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 0) |
| 21 | | nnne0 12300 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
| 22 | | velsn 4642 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) |
| 23 | 22 | necon3bbii 2988 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ {0} ↔ 𝑘 ≠ 0) |
| 24 | 21, 23 | sylibr 234 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ¬
𝑘 ∈
{0}) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0}) |
| 26 | 25 | iffalsed 4536 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0) |
| 27 | 20, 26 | eqtr4d 2780 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
| 28 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
| 29 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑0) = (0↑0)) |
| 30 | | 0exp0e1 14107 |
. . . . . . . . . 10
⊢
(0↑0) = 1 |
| 31 | 29, 30 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑0) = 1) |
| 32 | 31 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 /
(!‘0))) |
| 33 | | 0nn0 12541 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 34 | 8 | eftval 16112 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹‘0) = ((𝐴↑0) / (!‘0)) |
| 36 | | fac0 14315 |
. . . . . . . . . 10
⊢
(!‘0) = 1 |
| 37 | 36 | oveq2i 7442 |
. . . . . . . . 9
⊢ (1 /
(!‘0)) = (1 / 1) |
| 38 | | 1div1e1 11958 |
. . . . . . . . 9
⊢ (1 / 1) =
1 |
| 39 | 37, 38 | eqtr2i 2766 |
. . . . . . . 8
⊢ 1 = (1 /
(!‘0)) |
| 40 | 32, 35, 39 | 3eqtr4g 2802 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐹‘0) = 1) |
| 41 | 28, 40 | sylan9eqr 2799 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = 1) |
| 42 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0) |
| 43 | 42, 22 | sylibr 234 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0}) |
| 44 | 43 | iftrued 4533 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1) |
| 45 | 41, 44 | eqtr4d 2780 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
| 46 | 27, 45 | jaodan 960 |
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
| 47 | 5, 46 | syldan 591 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
| 48 | 33, 2 | eleqtri 2839 |
. . . 4
⊢ 0 ∈
(ℤ≥‘0) |
| 49 | 48 | a1i 11 |
. . 3
⊢ (𝐴 = 0 → 0 ∈
(ℤ≥‘0)) |
| 50 | | 1cnd 11256 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈
ℂ) |
| 51 | | fz0sn 13667 |
. . . . 5
⊢ (0...0) =
{0} |
| 52 | 51 | eqimss2i 4045 |
. . . 4
⊢ {0}
⊆ (0...0) |
| 53 | 52 | a1i 11 |
. . 3
⊢ (𝐴 = 0 → {0} ⊆
(0...0)) |
| 54 | 47, 49, 50, 53 | fsumcvg2 15763 |
. 2
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0)) |
| 55 | | 0z 12624 |
. . 3
⊢ 0 ∈
ℤ |
| 56 | 55, 40 | seq1i 14056 |
. 2
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1) |
| 57 | 54, 56 | breqtrd 5169 |
1
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |