MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   GIF version

Theorem ef0lem 15972
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 12814 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2843 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 12424 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 217 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 nnnn0 12429 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 482 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 eftval.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 15970 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
107, 9syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 oveq1 7369 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
12 0exp 14013 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1311, 12sylan9eq 2791 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1413oveq1d 7377 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
15 faccl 14193 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
16 nncn 12170 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
17 nnne0 12196 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
1816, 17div0d 11939 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
197, 15, 183syl 18 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2010, 14, 193eqtrd 2775 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
21 nnne0 12196 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
22 velsn 4607 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2322necon3bbii 2987 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2421, 23sylibr 233 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2524adantl 482 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2625iffalsed 4502 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
2720, 26eqtr4d 2774 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
28 fveq2 6847 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
29 oveq1 7369 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = (0↑0))
30 0exp0e1 13982 . . . . . . . . . 10 (0↑0) = 1
3129, 30eqtrdi 2787 . . . . . . . . 9 (𝐴 = 0 → (𝐴↑0) = 1)
3231oveq1d 7377 . . . . . . . 8 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
33 0nn0 12437 . . . . . . . . 9 0 ∈ ℕ0
348eftval 15970 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
3533, 34ax-mp 5 . . . . . . . 8 (𝐹‘0) = ((𝐴↑0) / (!‘0))
36 fac0 14186 . . . . . . . . . 10 (!‘0) = 1
3736oveq2i 7373 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
38 1div1e1 11854 . . . . . . . . 9 (1 / 1) = 1
3937, 38eqtr2i 2760 . . . . . . . 8 1 = (1 / (!‘0))
4032, 35, 393eqtr4g 2796 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4128, 40sylan9eqr 2793 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
42 simpr 485 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4342, 22sylibr 233 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4443iftrued 4499 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4541, 44eqtr4d 2774 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4627, 45jaodan 956 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
475, 46syldan 591 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4833, 2eleqtri 2830 . . . 4 0 ∈ (ℤ‘0)
4948a1i 11 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
50 1cnd 11159 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
51 fz0sn 13551 . . . . 5 (0...0) = {0}
5251eqimss2i 4008 . . . 4 {0} ⊆ (0...0)
5352a1i 11 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
5447, 49, 50, 53fsumcvg2 15623 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
55 0z 12519 . . 3 0 ∈ ℤ
5655, 40seq1i 13930 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
5754, 56breqtrd 5136 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wss 3913  ifcif 4491  {csn 4591   class class class wbr 5110  cmpt 5193  cfv 6501  (class class class)co 7362  0cc0 11060  1c1 11061   + caddc 11063   / cdiv 11821  cn 12162  0cn0 12422  cuz 12772  ...cfz 13434  seqcseq 13916  cexp 13977  !cfa 14183  cli 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-seq 13917  df-exp 13978  df-fac 14184  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382
This theorem is referenced by:  ef0  15984
  Copyright terms: Public domain W3C validator