MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   GIF version

Theorem ef0lem 15987
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 12776 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2844 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 12390 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 218 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 nnnn0 12395 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 481 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 eftval.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 15985 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
107, 9syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 oveq1 7359 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
12 0exp 14006 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1311, 12sylan9eq 2788 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1413oveq1d 7367 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
15 faccl 14192 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
16 nncn 12140 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
17 nnne0 12166 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
1816, 17div0d 11903 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
197, 15, 183syl 18 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2010, 14, 193eqtrd 2772 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
21 nnne0 12166 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
22 velsn 4591 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2322necon3bbii 2976 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2421, 23sylibr 234 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2524adantl 481 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2625iffalsed 4485 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
2720, 26eqtr4d 2771 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
28 fveq2 6828 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
29 oveq1 7359 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = (0↑0))
30 0exp0e1 13975 . . . . . . . . . 10 (0↑0) = 1
3129, 30eqtrdi 2784 . . . . . . . . 9 (𝐴 = 0 → (𝐴↑0) = 1)
3231oveq1d 7367 . . . . . . . 8 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
33 0nn0 12403 . . . . . . . . 9 0 ∈ ℕ0
348eftval 15985 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
3533, 34ax-mp 5 . . . . . . . 8 (𝐹‘0) = ((𝐴↑0) / (!‘0))
36 fac0 14185 . . . . . . . . . 10 (!‘0) = 1
3736oveq2i 7363 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
38 1div1e1 11819 . . . . . . . . 9 (1 / 1) = 1
3937, 38eqtr2i 2757 . . . . . . . 8 1 = (1 / (!‘0))
4032, 35, 393eqtr4g 2793 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4128, 40sylan9eqr 2790 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
42 simpr 484 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4342, 22sylibr 234 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4443iftrued 4482 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4541, 44eqtr4d 2771 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4627, 45jaodan 959 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
475, 46syldan 591 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4833, 2eleqtri 2831 . . . 4 0 ∈ (ℤ‘0)
4948a1i 11 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
50 1cnd 11114 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
51 fz0sn 13529 . . . . 5 (0...0) = {0}
5251eqimss2i 3992 . . . 4 {0} ⊆ (0...0)
5352a1i 11 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
5447, 49, 50, 53fsumcvg2 15636 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
55 0z 12486 . . 3 0 ∈ ℤ
5655, 40seq1i 13924 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
5754, 56breqtrd 5119 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wss 3898  ifcif 4474  {csn 4575   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   / cdiv 11781  cn 12132  0cn0 12388  cuz 12738  ...cfz 13409  seqcseq 13910  cexp 13970  !cfa 14182  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-exp 13971  df-fac 14183  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397
This theorem is referenced by:  ef0  16000
  Copyright terms: Public domain W3C validator