MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   GIF version

Theorem ef0lem 15776
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 12608 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2850 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 12223 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 217 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 nnnn0 12228 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 482 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 eftval.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 15774 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
107, 9syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 oveq1 7275 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
12 0exp 13806 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1311, 12sylan9eq 2798 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1413oveq1d 7283 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
15 faccl 13985 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
16 nncn 11969 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
17 nnne0 11995 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
1816, 17div0d 11738 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
197, 15, 183syl 18 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2010, 14, 193eqtrd 2782 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
21 nnne0 11995 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
22 velsn 4578 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2322necon3bbii 2991 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2421, 23sylibr 233 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2524adantl 482 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2625iffalsed 4471 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
2720, 26eqtr4d 2781 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
28 fveq2 6767 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
29 oveq1 7275 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = (0↑0))
30 0exp0e1 13775 . . . . . . . . . 10 (0↑0) = 1
3129, 30eqtrdi 2794 . . . . . . . . 9 (𝐴 = 0 → (𝐴↑0) = 1)
3231oveq1d 7283 . . . . . . . 8 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
33 0nn0 12236 . . . . . . . . 9 0 ∈ ℕ0
348eftval 15774 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
3533, 34ax-mp 5 . . . . . . . 8 (𝐹‘0) = ((𝐴↑0) / (!‘0))
36 fac0 13978 . . . . . . . . . 10 (!‘0) = 1
3736oveq2i 7279 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
38 1div1e1 11653 . . . . . . . . 9 (1 / 1) = 1
3937, 38eqtr2i 2767 . . . . . . . 8 1 = (1 / (!‘0))
4032, 35, 393eqtr4g 2803 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4128, 40sylan9eqr 2800 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
42 simpr 485 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4342, 22sylibr 233 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4443iftrued 4468 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4541, 44eqtr4d 2781 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4627, 45jaodan 955 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
475, 46syldan 591 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4833, 2eleqtri 2837 . . . 4 0 ∈ (ℤ‘0)
4948a1i 11 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
50 1cnd 10958 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
51 fz0sn 13344 . . . . 5 (0...0) = {0}
5251eqimss2i 3980 . . . 4 {0} ⊆ (0...0)
5352a1i 11 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
5447, 49, 50, 53fsumcvg2 15427 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
55 0z 12318 . . 3 0 ∈ ℤ
5655, 40seq1i 13723 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
5754, 56breqtrd 5100 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wss 3887  ifcif 4460  {csn 4562   class class class wbr 5074  cmpt 5157  cfv 6427  (class class class)co 7268  0cc0 10859  1c1 10860   + caddc 10862   / cdiv 11620  cn 11961  0cn0 12221  cuz 12570  ...cfz 13227  seqcseq 13709  cexp 13770  !cfa 13975  cli 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-fz 13228  df-seq 13710  df-exp 13771  df-fac 13976  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185
This theorem is referenced by:  ef0  15788
  Copyright terms: Public domain W3C validator