Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
(ℤ≥‘0)) |
2 | | nn0uz 12549 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
ℕ0) |
4 | | elnn0 12165 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
5 | 3, 4 | sylib 217 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
6 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
8 | | eftval.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
9 | 8 | eftval 15714 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
10 | 7, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
11 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑𝑘) = (0↑𝑘)) |
12 | | 0exp 13746 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(0↑𝑘) =
0) |
13 | 11, 12 | sylan9eq 2799 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) = 0) |
14 | 13 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) |
15 | | faccl 13925 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
16 | | nncn 11911 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
∈ ℂ) |
17 | | nnne0 11937 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
≠ 0) |
18 | 16, 17 | div0d 11680 |
. . . . . . . 8
⊢
((!‘𝑘) ∈
ℕ → (0 / (!‘𝑘)) = 0) |
19 | 7, 15, 18 | 3syl 18 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0) |
20 | 10, 14, 19 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 0) |
21 | | nnne0 11937 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
22 | | velsn 4574 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) |
23 | 22 | necon3bbii 2990 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ {0} ↔ 𝑘 ≠ 0) |
24 | 21, 23 | sylibr 233 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ¬
𝑘 ∈
{0}) |
25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0}) |
26 | 25 | iffalsed 4467 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0) |
27 | 20, 26 | eqtr4d 2781 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
28 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
29 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑0) = (0↑0)) |
30 | | 0exp0e1 13715 |
. . . . . . . . . 10
⊢
(0↑0) = 1 |
31 | 29, 30 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑0) = 1) |
32 | 31 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 /
(!‘0))) |
33 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
34 | 8 | eftval 15714 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0))) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹‘0) = ((𝐴↑0) / (!‘0)) |
36 | | fac0 13918 |
. . . . . . . . . 10
⊢
(!‘0) = 1 |
37 | 36 | oveq2i 7266 |
. . . . . . . . 9
⊢ (1 /
(!‘0)) = (1 / 1) |
38 | | 1div1e1 11595 |
. . . . . . . . 9
⊢ (1 / 1) =
1 |
39 | 37, 38 | eqtr2i 2767 |
. . . . . . . 8
⊢ 1 = (1 /
(!‘0)) |
40 | 32, 35, 39 | 3eqtr4g 2804 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐹‘0) = 1) |
41 | 28, 40 | sylan9eqr 2801 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = 1) |
42 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0) |
43 | 42, 22 | sylibr 233 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0}) |
44 | 43 | iftrued 4464 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1) |
45 | 41, 44 | eqtr4d 2781 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
46 | 27, 45 | jaodan 954 |
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
47 | 5, 46 | syldan 590 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
48 | 33, 2 | eleqtri 2837 |
. . . 4
⊢ 0 ∈
(ℤ≥‘0) |
49 | 48 | a1i 11 |
. . 3
⊢ (𝐴 = 0 → 0 ∈
(ℤ≥‘0)) |
50 | | 1cnd 10901 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈
ℂ) |
51 | | fz0sn 13285 |
. . . . 5
⊢ (0...0) =
{0} |
52 | 51 | eqimss2i 3976 |
. . . 4
⊢ {0}
⊆ (0...0) |
53 | 52 | a1i 11 |
. . 3
⊢ (𝐴 = 0 → {0} ⊆
(0...0)) |
54 | 47, 49, 50, 53 | fsumcvg2 15367 |
. 2
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0)) |
55 | | 0z 12260 |
. . 3
⊢ 0 ∈
ℤ |
56 | 55, 40 | seq1i 13663 |
. 2
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1) |
57 | 54, 56 | breqtrd 5096 |
1
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |