![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayley | Structured version Visualization version GIF version |
Description: Cayley's Theorem (constructive version): given group πΊ, πΉ is an isomorphism between πΊ and the subgroup π of the symmetric group π» on the underlying set π of πΊ. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | β’ π = (BaseβπΊ) |
cayley.h | β’ π» = (SymGrpβπ) |
cayley.p | β’ + = (+gβπΊ) |
cayley.f | β’ πΉ = (π β π β¦ (π β π β¦ (π + π))) |
cayley.s | β’ π = ran πΉ |
Ref | Expression |
---|---|
cayley | β’ (πΊ β Grp β (π β (SubGrpβπ») β§ πΉ β (πΊ GrpHom (π» βΎs π)) β§ πΉ:πβ1-1-ontoβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.s | . . 3 β’ π = ran πΉ | |
2 | cayley.x | . . . . 5 β’ π = (BaseβπΊ) | |
3 | cayley.p | . . . . 5 β’ + = (+gβπΊ) | |
4 | eqid 2733 | . . . . 5 β’ (0gβπΊ) = (0gβπΊ) | |
5 | cayley.h | . . . . 5 β’ π» = (SymGrpβπ) | |
6 | eqid 2733 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
7 | cayley.f | . . . . 5 β’ πΉ = (π β π β¦ (π β π β¦ (π + π))) | |
8 | 2, 3, 4, 5, 6, 7 | cayleylem1 19280 | . . . 4 β’ (πΊ β Grp β πΉ β (πΊ GrpHom π»)) |
9 | ghmrn 19105 | . . . 4 β’ (πΉ β (πΊ GrpHom π») β ran πΉ β (SubGrpβπ»)) | |
10 | 8, 9 | syl 17 | . . 3 β’ (πΊ β Grp β ran πΉ β (SubGrpβπ»)) |
11 | 1, 10 | eqeltrid 2838 | . 2 β’ (πΊ β Grp β π β (SubGrpβπ»)) |
12 | 1 | eqimss2i 4044 | . . . 4 β’ ran πΉ β π |
13 | eqid 2733 | . . . . 5 β’ (π» βΎs π) = (π» βΎs π) | |
14 | 13 | resghm2b 19110 | . . . 4 β’ ((π β (SubGrpβπ») β§ ran πΉ β π) β (πΉ β (πΊ GrpHom π») β πΉ β (πΊ GrpHom (π» βΎs π)))) |
15 | 11, 12, 14 | sylancl 587 | . . 3 β’ (πΊ β Grp β (πΉ β (πΊ GrpHom π») β πΉ β (πΊ GrpHom (π» βΎs π)))) |
16 | 8, 15 | mpbid 231 | . 2 β’ (πΊ β Grp β πΉ β (πΊ GrpHom (π» βΎs π))) |
17 | 2, 3, 4, 5, 6, 7 | cayleylem2 19281 | . . . 4 β’ (πΊ β Grp β πΉ:πβ1-1β(Baseβπ»)) |
18 | f1f1orn 6845 | . . . 4 β’ (πΉ:πβ1-1β(Baseβπ») β πΉ:πβ1-1-ontoβran πΉ) | |
19 | 17, 18 | syl 17 | . . 3 β’ (πΊ β Grp β πΉ:πβ1-1-ontoβran πΉ) |
20 | f1oeq3 6824 | . . . 4 β’ (π = ran πΉ β (πΉ:πβ1-1-ontoβπ β πΉ:πβ1-1-ontoβran πΉ)) | |
21 | 1, 20 | ax-mp 5 | . . 3 β’ (πΉ:πβ1-1-ontoβπ β πΉ:πβ1-1-ontoβran πΉ) |
22 | 19, 21 | sylibr 233 | . 2 β’ (πΊ β Grp β πΉ:πβ1-1-ontoβπ) |
23 | 11, 16, 22 | 3jca 1129 | 1 β’ (πΊ β Grp β (π β (SubGrpβπ») β§ πΉ β (πΊ GrpHom (π» βΎs π)) β§ πΉ:πβ1-1-ontoβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1088 = wceq 1542 β wcel 2107 β wss 3949 β¦ cmpt 5232 ran crn 5678 β1-1βwf1 6541 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7409 Basecbs 17144 βΎs cress 17173 +gcplusg 17197 0gc0g 17385 Grpcgrp 18819 SubGrpcsubg 19000 GrpHom cghm 19089 SymGrpcsymg 19234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-tset 17216 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-efmnd 18750 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-ghm 19090 df-ga 19154 df-symg 19235 |
This theorem is referenced by: cayleyth 19283 |
Copyright terms: Public domain | W3C validator |