MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayley Structured version   Visualization version   GIF version

Theorem cayley 19334
Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
cayley.p + = (+g𝐺)
cayley.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
cayley.s 𝑆 = ran 𝐹
Assertion
Ref Expression
cayley (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Distinct variable groups:   𝑔,𝑎,𝐺   𝑔,𝐻   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)

Proof of Theorem cayley
StepHypRef Expression
1 cayley.s . . 3 𝑆 = ran 𝐹
2 cayley.x . . . . 5 𝑋 = (Base‘𝐺)
3 cayley.p . . . . 5 + = (+g𝐺)
4 eqid 2733 . . . . 5 (0g𝐺) = (0g𝐺)
5 cayley.h . . . . 5 𝐻 = (SymGrp‘𝑋)
6 eqid 2733 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 cayley.f . . . . 5 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
82, 3, 4, 5, 6, 7cayleylem1 19332 . . . 4 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9 ghmrn 19149 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
108, 9syl 17 . . 3 (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻))
111, 10eqeltrid 2837 . 2 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻))
121eqimss2i 3992 . . . 4 ran 𝐹𝑆
13 eqid 2733 . . . . 5 (𝐻s 𝑆) = (𝐻s 𝑆)
1413resghm2b 19154 . . . 4 ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
1511, 12, 14sylancl 586 . . 3 (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
168, 15mpbid 232 . 2 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)))
172, 3, 4, 5, 6, 7cayleylem2 19333 . . . 4 (𝐺 ∈ Grp → 𝐹:𝑋1-1→(Base‘𝐻))
18 f1f1orn 6782 . . . 4 (𝐹:𝑋1-1→(Base‘𝐻) → 𝐹:𝑋1-1-onto→ran 𝐹)
1917, 18syl 17 . . 3 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto→ran 𝐹)
20 f1oeq3 6761 . . . 4 (𝑆 = ran 𝐹 → (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹))
211, 20ax-mp 5 . . 3 (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹)
2219, 21sylibr 234 . 2 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto𝑆)
2311, 16, 223jca 1128 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  wss 3898  cmpt 5176  ran crn 5622  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  +gcplusg 17168  0gc0g 17350  Grpcgrp 18854  SubGrpcsubg 19041   GrpHom cghm 19132  SymGrpcsymg 19289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-tset 17187  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-efmnd 18785  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-ghm 19133  df-ga 19210  df-symg 19290
This theorem is referenced by:  cayleyth  19335
  Copyright terms: Public domain W3C validator