MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayley Structured version   Visualization version   GIF version

Theorem cayley 19432
Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
cayley.p + = (+g𝐺)
cayley.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
cayley.s 𝑆 = ran 𝐹
Assertion
Ref Expression
cayley (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Distinct variable groups:   𝑔,𝑎,𝐺   𝑔,𝐻   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)

Proof of Theorem cayley
StepHypRef Expression
1 cayley.s . . 3 𝑆 = ran 𝐹
2 cayley.x . . . . 5 𝑋 = (Base‘𝐺)
3 cayley.p . . . . 5 + = (+g𝐺)
4 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
5 cayley.h . . . . 5 𝐻 = (SymGrp‘𝑋)
6 eqid 2737 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 cayley.f . . . . 5 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
82, 3, 4, 5, 6, 7cayleylem1 19430 . . . 4 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9 ghmrn 19247 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
108, 9syl 17 . . 3 (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻))
111, 10eqeltrid 2845 . 2 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻))
121eqimss2i 4045 . . . 4 ran 𝐹𝑆
13 eqid 2737 . . . . 5 (𝐻s 𝑆) = (𝐻s 𝑆)
1413resghm2b 19252 . . . 4 ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
1511, 12, 14sylancl 586 . . 3 (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
168, 15mpbid 232 . 2 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)))
172, 3, 4, 5, 6, 7cayleylem2 19431 . . . 4 (𝐺 ∈ Grp → 𝐹:𝑋1-1→(Base‘𝐻))
18 f1f1orn 6859 . . . 4 (𝐹:𝑋1-1→(Base‘𝐻) → 𝐹:𝑋1-1-onto→ran 𝐹)
1917, 18syl 17 . . 3 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto→ran 𝐹)
20 f1oeq3 6838 . . . 4 (𝑆 = ran 𝐹 → (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹))
211, 20ax-mp 5 . . 3 (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹)
2219, 21sylibr 234 . 2 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto𝑆)
2311, 16, 223jca 1129 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wss 3951  cmpt 5225  ran crn 5686  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  SubGrpcsubg 19138   GrpHom cghm 19230  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-ga 19308  df-symg 19387
This theorem is referenced by:  cayleyth  19433
  Copyright terms: Public domain W3C validator