MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayley Structured version   Visualization version   GIF version

Theorem cayley 18542
Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
cayley.p + = (+g𝐺)
cayley.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
cayley.s 𝑆 = ran 𝐹
Assertion
Ref Expression
cayley (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Distinct variable groups:   𝑔,𝑎,𝐺   𝑔,𝐻   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)

Proof of Theorem cayley
StepHypRef Expression
1 cayley.s . . 3 𝑆 = ran 𝐹
2 cayley.x . . . . 5 𝑋 = (Base‘𝐺)
3 cayley.p . . . . 5 + = (+g𝐺)
4 eqid 2824 . . . . 5 (0g𝐺) = (0g𝐺)
5 cayley.h . . . . 5 𝐻 = (SymGrp‘𝑋)
6 eqid 2824 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 cayley.f . . . . 5 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
82, 3, 4, 5, 6, 7cayleylem1 18540 . . . 4 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9 ghmrn 18371 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
108, 9syl 17 . . 3 (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻))
111, 10eqeltrid 2920 . 2 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻))
121eqimss2i 4012 . . . 4 ran 𝐹𝑆
13 eqid 2824 . . . . 5 (𝐻s 𝑆) = (𝐻s 𝑆)
1413resghm2b 18376 . . . 4 ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
1511, 12, 14sylancl 589 . . 3 (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
168, 15mpbid 235 . 2 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)))
172, 3, 4, 5, 6, 7cayleylem2 18541 . . . 4 (𝐺 ∈ Grp → 𝐹:𝑋1-1→(Base‘𝐻))
18 f1f1orn 6617 . . . 4 (𝐹:𝑋1-1→(Base‘𝐻) → 𝐹:𝑋1-1-onto→ran 𝐹)
1917, 18syl 17 . . 3 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto→ran 𝐹)
20 f1oeq3 6597 . . . 4 (𝑆 = ran 𝐹 → (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹))
211, 20ax-mp 5 . . 3 (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹)
2219, 21sylibr 237 . 2 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto𝑆)
2311, 16, 223jca 1125 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  wss 3919  cmpt 5132  ran crn 5543  1-1wf1 6340  1-1-ontowf1o 6342  cfv 6343  (class class class)co 7149  Basecbs 16483  s cress 16484  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  SubGrpcsubg 18273   GrpHom cghm 18355  SymGrpcsymg 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-ga 18420  df-symg 18496
This theorem is referenced by:  cayleyth  18543
  Copyright terms: Public domain W3C validator