MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayley Structured version   Visualization version   GIF version

Theorem cayley 19344
Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayley.x 𝑋 = (Base‘𝐺)
cayley.h 𝐻 = (SymGrp‘𝑋)
cayley.p + = (+g𝐺)
cayley.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
cayley.s 𝑆 = ran 𝐹
Assertion
Ref Expression
cayley (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Distinct variable groups:   𝑔,𝑎,𝐺   𝑔,𝐻   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)

Proof of Theorem cayley
StepHypRef Expression
1 cayley.s . . 3 𝑆 = ran 𝐹
2 cayley.x . . . . 5 𝑋 = (Base‘𝐺)
3 cayley.p . . . . 5 + = (+g𝐺)
4 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
5 cayley.h . . . . 5 𝐻 = (SymGrp‘𝑋)
6 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 cayley.f . . . . 5 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
82, 3, 4, 5, 6, 7cayleylem1 19342 . . . 4 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9 ghmrn 19161 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
108, 9syl 17 . . 3 (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻))
111, 10eqeltrid 2832 . 2 (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻))
121eqimss2i 4008 . . . 4 ran 𝐹𝑆
13 eqid 2729 . . . . 5 (𝐻s 𝑆) = (𝐻s 𝑆)
1413resghm2b 19166 . . . 4 ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
1511, 12, 14sylancl 586 . . 3 (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆))))
168, 15mpbid 232 . 2 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)))
172, 3, 4, 5, 6, 7cayleylem2 19343 . . . 4 (𝐺 ∈ Grp → 𝐹:𝑋1-1→(Base‘𝐻))
18 f1f1orn 6811 . . . 4 (𝐹:𝑋1-1→(Base‘𝐻) → 𝐹:𝑋1-1-onto→ran 𝐹)
1917, 18syl 17 . . 3 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto→ran 𝐹)
20 f1oeq3 6790 . . . 4 (𝑆 = ran 𝐹 → (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹))
211, 20ax-mp 5 . . 3 (𝐹:𝑋1-1-onto𝑆𝐹:𝑋1-1-onto→ran 𝐹)
2219, 21sylibr 234 . 2 (𝐺 ∈ Grp → 𝐹:𝑋1-1-onto𝑆)
2311, 16, 223jca 1128 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻s 𝑆)) ∧ 𝐹:𝑋1-1-onto𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wss 3914  cmpt 5188  ran crn 5639  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  SubGrpcsubg 19052   GrpHom cghm 19144  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-ga 19222  df-symg 19300
This theorem is referenced by:  cayleyth  19345
  Copyright terms: Public domain W3C validator