| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayley | Structured version Visualization version GIF version | ||
| Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| cayley.p | ⊢ + = (+g‘𝐺) |
| cayley.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| cayley.s | ⊢ 𝑆 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cayley | ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayley.s | . . 3 ⊢ 𝑆 = ran 𝐹 | |
| 2 | cayley.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | cayley.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | cayley.h | . . . . 5 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 7 | cayley.f | . . . . 5 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 2, 3, 4, 5, 6, 7 | cayleylem1 19309 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 9 | ghmrn 19126 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻)) |
| 11 | 1, 10 | eqeltrid 2832 | . 2 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻)) |
| 12 | 1 | eqimss2i 3999 | . . . 4 ⊢ ran 𝐹 ⊆ 𝑆 |
| 13 | eqid 2729 | . . . . 5 ⊢ (𝐻 ↾s 𝑆) = (𝐻 ↾s 𝑆) | |
| 14 | 13 | resghm2b 19131 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 16 | 8, 15 | mpbid 232 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆))) |
| 17 | 2, 3, 4, 5, 6, 7 | cayleylem2 19310 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→(Base‘𝐻)) |
| 18 | f1f1orn 6779 | . . . 4 ⊢ (𝐹:𝑋–1-1→(Base‘𝐻) → 𝐹:𝑋–1-1-onto→ran 𝐹) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 20 | f1oeq3 6758 | . . . 4 ⊢ (𝑆 = ran 𝐹 → (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹)) | |
| 21 | 1, 20 | ax-mp 5 | . . 3 ⊢ (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→𝑆) |
| 23 | 11, 16, 22 | 3jca 1128 | 1 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ↦ cmpt 5176 ran crn 5624 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 SubGrpcsubg 19017 GrpHom cghm 19109 SymGrpcsymg 19266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-tset 17198 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-ga 19187 df-symg 19267 |
| This theorem is referenced by: cayleyth 19312 |
| Copyright terms: Public domain | W3C validator |