| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayley | Structured version Visualization version GIF version | ||
| Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| cayley.p | ⊢ + = (+g‘𝐺) |
| cayley.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| cayley.s | ⊢ 𝑆 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cayley | ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayley.s | . . 3 ⊢ 𝑆 = ran 𝐹 | |
| 2 | cayley.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | cayley.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | cayley.h | . . . . 5 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 7 | cayley.f | . . . . 5 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 2, 3, 4, 5, 6, 7 | cayleylem1 19319 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 9 | ghmrn 19136 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻)) |
| 11 | 1, 10 | eqeltrid 2835 | . 2 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻)) |
| 12 | 1 | eqimss2i 3991 | . . . 4 ⊢ ran 𝐹 ⊆ 𝑆 |
| 13 | eqid 2731 | . . . . 5 ⊢ (𝐻 ↾s 𝑆) = (𝐻 ↾s 𝑆) | |
| 14 | 13 | resghm2b 19141 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 16 | 8, 15 | mpbid 232 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆))) |
| 17 | 2, 3, 4, 5, 6, 7 | cayleylem2 19320 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→(Base‘𝐻)) |
| 18 | f1f1orn 6769 | . . . 4 ⊢ (𝐹:𝑋–1-1→(Base‘𝐻) → 𝐹:𝑋–1-1-onto→ran 𝐹) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 20 | f1oeq3 6748 | . . . 4 ⊢ (𝑆 = ran 𝐹 → (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹)) | |
| 21 | 1, 20 | ax-mp 5 | . . 3 ⊢ (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→𝑆) |
| 23 | 11, 16, 22 | 3jca 1128 | 1 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ↦ cmpt 5167 ran crn 5612 –1-1→wf1 6473 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 0gc0g 17338 Grpcgrp 18841 SubGrpcsubg 19028 GrpHom cghm 19119 SymGrpcsymg 19276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-tset 17175 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19120 df-ga 19197 df-symg 19277 |
| This theorem is referenced by: cayleyth 19322 |
| Copyright terms: Public domain | W3C validator |