| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayley | Structured version Visualization version GIF version | ||
| Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
| cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
| cayley.p | ⊢ + = (+g‘𝐺) |
| cayley.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| cayley.s | ⊢ 𝑆 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cayley | ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayley.s | . . 3 ⊢ 𝑆 = ran 𝐹 | |
| 2 | cayley.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | cayley.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | cayley.h | . . . . 5 ⊢ 𝐻 = (SymGrp‘𝑋) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 7 | cayley.f | . . . . 5 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 8 | 2, 3, 4, 5, 6, 7 | cayleylem1 19349 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 9 | ghmrn 19168 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻)) |
| 11 | 1, 10 | eqeltrid 2833 | . 2 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻)) |
| 12 | 1 | eqimss2i 4011 | . . . 4 ⊢ ran 𝐹 ⊆ 𝑆 |
| 13 | eqid 2730 | . . . . 5 ⊢ (𝐻 ↾s 𝑆) = (𝐻 ↾s 𝑆) | |
| 14 | 13 | resghm2b 19173 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
| 16 | 8, 15 | mpbid 232 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆))) |
| 17 | 2, 3, 4, 5, 6, 7 | cayleylem2 19350 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→(Base‘𝐻)) |
| 18 | f1f1orn 6814 | . . . 4 ⊢ (𝐹:𝑋–1-1→(Base‘𝐻) → 𝐹:𝑋–1-1-onto→ran 𝐹) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 20 | f1oeq3 6793 | . . . 4 ⊢ (𝑆 = ran 𝐹 → (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹)) | |
| 21 | 1, 20 | ax-mp 5 | . . 3 ⊢ (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→𝑆) |
| 23 | 11, 16, 22 | 3jca 1128 | 1 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 –1-1→wf1 6511 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 SubGrpcsubg 19059 GrpHom cghm 19151 SymGrpcsymg 19306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-tset 17246 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-efmnd 18803 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-ga 19229 df-symg 19307 |
| This theorem is referenced by: cayleyth 19352 |
| Copyright terms: Public domain | W3C validator |