| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version | ||
| Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 7743 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2837 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 1 | eqimss2i 4027 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni 5082 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 17451 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
| 8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 (class class class)co 7414 ↾t crest 17441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rest 17443 |
| This theorem is referenced by: toponrestid 22894 restin 23139 cnrmnrm 23334 cmpkgen 23524 xkopt 23628 xkoinjcn 23660 ussid 24234 tuslem 24240 cnperf 24797 retopconn 24806 abscncfALT 24906 cnmpopc 24910 recnperf 25895 lhop1lem 26007 cxpcn3 26746 retopsconn 35195 ivthALT 36277 binomcxplemdvbinom 44317 binomcxplemnotnn0 44320 fsumcncf 45838 ioccncflimc 45845 cncfuni 45846 icocncflimc 45849 cncfiooicclem1 45853 itgsubsticclem 45935 dirkercncflem2 46064 dirkercncflem4 46066 fourierdlem32 46099 fourierdlem33 46100 fourierdlem62 46128 fourierdlem93 46159 fourierdlem101 46167 |
| Copyright terms: Public domain | W3C validator |