| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version | ||
| Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 7680 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 1 | eqimss2i 3999 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni 5052 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 17352 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
| 8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: toponrestid 22824 restin 23069 cnrmnrm 23264 cmpkgen 23454 xkopt 23558 xkoinjcn 23590 ussid 24164 tuslem 24170 cnperf 24725 retopconn 24734 abscncfALT 24834 cnmpopc 24838 recnperf 25822 lhop1lem 25934 cxpcn3 26674 retopsconn 35221 ivthALT 36308 binomcxplemdvbinom 44326 binomcxplemnotnn0 44329 fsumcncf 45860 ioccncflimc 45867 cncfuni 45868 icocncflimc 45871 cncfiooicclem1 45875 itgsubsticclem 45957 dirkercncflem2 46086 dirkercncflem4 46088 fourierdlem32 46121 fourierdlem33 46122 fourierdlem62 46150 fourierdlem93 46181 fourierdlem101 46189 |
| Copyright terms: Public domain | W3C validator |