![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version |
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7759 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | eqeltrid 2843 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 1 | eqimss2i 4057 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
5 | sspwuni 5105 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
7 | restid2 17477 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 (class class class)co 7431 ↾t crest 17467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17469 |
This theorem is referenced by: toponrestid 22943 restin 23190 cnrmnrm 23385 cmpkgen 23575 xkopt 23679 xkoinjcn 23711 ussid 24285 tuslem 24291 tuslemOLD 24292 cnperf 24856 retopconn 24865 abscncfALT 24965 cnmpopc 24969 recnperf 25955 lhop1lem 26067 cxpcn3 26806 retopsconn 35234 ivthALT 36318 binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 fsumcncf 45834 ioccncflimc 45841 cncfuni 45842 icocncflimc 45845 cncfiooicclem1 45849 itgsubsticclem 45931 dirkercncflem2 46060 dirkercncflem4 46062 fourierdlem32 46095 fourierdlem33 46096 fourierdlem62 46124 fourierdlem93 46155 fourierdlem101 46163 |
Copyright terms: Public domain | W3C validator |