MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restid Structured version   Visualization version   GIF version

Theorem restid 17125
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restid.1 𝑋 = 𝐽
Assertion
Ref Expression
restid (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)

Proof of Theorem restid
StepHypRef Expression
1 restid.1 . . 3 𝑋 = 𝐽
2 uniexg 7584 . . 3 (𝐽𝑉 𝐽 ∈ V)
31, 2eqeltrid 2844 . 2 (𝐽𝑉𝑋 ∈ V)
41eqimss2i 3984 . . 3 𝐽𝑋
5 sspwuni 5033 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
64, 5mpbir 230 . 2 𝐽 ⊆ 𝒫 𝑋
7 restid2 17122 . 2 ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽t 𝑋) = 𝐽)
83, 6, 7sylancl 585 1 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  wss 3891  𝒫 cpw 4538   cuni 4844  (class class class)co 7268  t crest 17112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-rest 17114
This theorem is referenced by:  toponrestid  22051  restin  22298  cnrmnrm  22493  cmpkgen  22683  xkopt  22787  xkoinjcn  22819  ussid  23393  tuslem  23399  tuslemOLD  23400  cnperf  23964  retopconn  23973  abscncfALT  24068  cnmpopc  24072  recnperf  25050  lhop1lem  25158  cxpcn3  25882  retopsconn  33190  ivthALT  34503  binomcxplemdvbinom  41924  binomcxplemnotnn0  41927  fsumcncf  43373  ioccncflimc  43380  cncfuni  43381  icocncflimc  43384  cncfiooicclem1  43388  itgsubsticclem  43470  dirkercncflem2  43599  dirkercncflem4  43601  fourierdlem32  43634  fourierdlem33  43635  fourierdlem62  43663  fourierdlem93  43694  fourierdlem101  43702
  Copyright terms: Public domain W3C validator