![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version |
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7316 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | syl5eqel 2885 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 1 | eqimss2i 3942 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
5 | sspwuni 4915 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
6 | 4, 5 | mpbir 232 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
7 | restid2 16521 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ⊆ wss 3854 𝒫 cpw 4447 ∪ cuni 4739 (class class class)co 7007 ↾t crest 16511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-rest 16513 |
This theorem is referenced by: toponrestid 21201 restin 21446 cnrmnrm 21641 cmpkgen 21831 xkopt 21935 xkoinjcn 21967 ussid 22540 tuslem 22547 cnperf 23099 retopconn 23108 abscncfALT 23199 cnmpopc 23203 recnperf 24174 lhop1lem 24281 cxpcn3 24998 retopsconn 32060 ivthALT 33237 binomcxplemdvbinom 40175 binomcxplemnotnn0 40178 fsumcncf 41656 ioccncflimc 41663 cncfuni 41664 icocncflimc 41667 cncfiooicclem1 41671 itgsubsticclem 41755 dirkercncflem2 41885 dirkercncflem4 41887 fourierdlem32 41920 fourierdlem33 41921 fourierdlem62 41949 fourierdlem93 41980 fourierdlem101 41988 |
Copyright terms: Public domain | W3C validator |