| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version | ||
| Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 7716 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 1 | eqimss2i 4008 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni 5064 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 17393 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
| 8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: toponrestid 22808 restin 23053 cnrmnrm 23248 cmpkgen 23438 xkopt 23542 xkoinjcn 23574 ussid 24148 tuslem 24154 cnperf 24709 retopconn 24718 abscncfALT 24818 cnmpopc 24822 recnperf 25806 lhop1lem 25918 cxpcn3 26658 retopsconn 35236 ivthALT 36323 binomcxplemdvbinom 44342 binomcxplemnotnn0 44345 fsumcncf 45876 ioccncflimc 45883 cncfuni 45884 icocncflimc 45887 cncfiooicclem1 45891 itgsubsticclem 45973 dirkercncflem2 46102 dirkercncflem4 46104 fourierdlem32 46137 fourierdlem33 46138 fourierdlem62 46166 fourierdlem93 46197 fourierdlem101 46205 |
| Copyright terms: Public domain | W3C validator |