![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version |
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7733 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | eqeltrid 2836 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 1 | eqimss2i 4043 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
5 | sspwuni 5103 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
6 | 4, 5 | mpbir 230 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
7 | restid2 17381 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
8 | 3, 6, 7 | sylancl 585 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 (class class class)co 7412 ↾t crest 17371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rest 17373 |
This theorem is referenced by: toponrestid 22644 restin 22891 cnrmnrm 23086 cmpkgen 23276 xkopt 23380 xkoinjcn 23412 ussid 23986 tuslem 23992 tuslemOLD 23993 cnperf 24557 retopconn 24566 abscncfALT 24666 cnmpopc 24670 recnperf 25655 lhop1lem 25766 cxpcn3 26493 retopsconn 34539 ivthALT 35524 binomcxplemdvbinom 43415 binomcxplemnotnn0 43418 fsumcncf 44893 ioccncflimc 44900 cncfuni 44901 icocncflimc 44904 cncfiooicclem1 44908 itgsubsticclem 44990 dirkercncflem2 45119 dirkercncflem4 45121 fourierdlem32 45154 fourierdlem33 45155 fourierdlem62 45183 fourierdlem93 45214 fourierdlem101 45222 |
Copyright terms: Public domain | W3C validator |