| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version | ||
| Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 7739 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2839 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 1 | eqimss2i 4025 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni 5081 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 17449 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
| 8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rest 17441 |
| This theorem is referenced by: toponrestid 22864 restin 23109 cnrmnrm 23304 cmpkgen 23494 xkopt 23598 xkoinjcn 23630 ussid 24204 tuslem 24210 cnperf 24765 retopconn 24774 abscncfALT 24874 cnmpopc 24878 recnperf 25863 lhop1lem 25975 cxpcn3 26715 retopsconn 35276 ivthALT 36358 binomcxplemdvbinom 44352 binomcxplemnotnn0 44355 fsumcncf 45887 ioccncflimc 45894 cncfuni 45895 icocncflimc 45898 cncfiooicclem1 45902 itgsubsticclem 45984 dirkercncflem2 46113 dirkercncflem4 46115 fourierdlem32 46148 fourierdlem33 46149 fourierdlem62 46177 fourierdlem93 46208 fourierdlem101 46216 |
| Copyright terms: Public domain | W3C validator |