MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restid Structured version   Visualization version   GIF version

Theorem restid 17355
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restid.1 𝑋 = 𝐽
Assertion
Ref Expression
restid (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)

Proof of Theorem restid
StepHypRef Expression
1 restid.1 . . 3 𝑋 = 𝐽
2 uniexg 7680 . . 3 (𝐽𝑉 𝐽 ∈ V)
31, 2eqeltrid 2832 . 2 (𝐽𝑉𝑋 ∈ V)
41eqimss2i 3999 . . 3 𝐽𝑋
5 sspwuni 5052 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
64, 5mpbir 231 . 2 𝐽 ⊆ 𝒫 𝑋
7 restid2 17352 . 2 ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽t 𝑋) = 𝐽)
83, 6, 7sylancl 586 1 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861  (class class class)co 7353  t crest 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rest 17344
This theorem is referenced by:  toponrestid  22824  restin  23069  cnrmnrm  23264  cmpkgen  23454  xkopt  23558  xkoinjcn  23590  ussid  24164  tuslem  24170  cnperf  24725  retopconn  24734  abscncfALT  24834  cnmpopc  24838  recnperf  25822  lhop1lem  25934  cxpcn3  26674  retopsconn  35221  ivthALT  36308  binomcxplemdvbinom  44326  binomcxplemnotnn0  44329  fsumcncf  45860  ioccncflimc  45867  cncfuni  45868  icocncflimc  45871  cncfiooicclem1  45875  itgsubsticclem  45957  dirkercncflem2  46086  dirkercncflem4  46088  fourierdlem32  46121  fourierdlem33  46122  fourierdlem62  46150  fourierdlem93  46181  fourierdlem101  46189
  Copyright terms: Public domain W3C validator