| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version | ||
| Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 7673 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2835 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 1 | eqimss2i 3996 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni 5048 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 17331 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
| 8 | 3, 6, 7 | sylancl 586 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 (class class class)co 7346 ↾t crest 17321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rest 17323 |
| This theorem is referenced by: toponrestid 22834 restin 23079 cnrmnrm 23274 cmpkgen 23464 xkopt 23568 xkoinjcn 23600 ussid 24173 tuslem 24179 cnperf 24734 retopconn 24743 abscncfALT 24843 cnmpopc 24847 recnperf 25831 lhop1lem 25943 cxpcn3 26683 retopsconn 35281 ivthALT 36368 binomcxplemdvbinom 44385 binomcxplemnotnn0 44388 fsumcncf 45915 ioccncflimc 45922 cncfuni 45923 icocncflimc 45926 cncfiooicclem1 45930 itgsubsticclem 46012 dirkercncflem2 46141 dirkercncflem4 46143 fourierdlem32 46176 fourierdlem33 46177 fourierdlem62 46205 fourierdlem93 46236 fourierdlem101 46244 |
| Copyright terms: Public domain | W3C validator |