Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restid | Structured version Visualization version GIF version |
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restid.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restid | ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restid.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 7625 | . . 3 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | eqeltrid 2841 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 1 | eqimss2i 3985 | . . 3 ⊢ ∪ 𝐽 ⊆ 𝑋 |
5 | sspwuni 5036 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
6 | 4, 5 | mpbir 230 | . 2 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
7 | restid2 17186 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽 ↾t 𝑋) = 𝐽) | |
8 | 3, 6, 7 | sylancl 587 | 1 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4844 (class class class)co 7307 ↾t crest 17176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-rest 17178 |
This theorem is referenced by: toponrestid 22115 restin 22362 cnrmnrm 22557 cmpkgen 22747 xkopt 22851 xkoinjcn 22883 ussid 23457 tuslem 23463 tuslemOLD 23464 cnperf 24028 retopconn 24037 abscncfALT 24132 cnmpopc 24136 recnperf 25114 lhop1lem 25222 cxpcn3 25946 retopsconn 33256 ivthALT 34569 binomcxplemdvbinom 42009 binomcxplemnotnn0 42012 fsumcncf 43468 ioccncflimc 43475 cncfuni 43476 icocncflimc 43479 cncfiooicclem1 43483 itgsubsticclem 43565 dirkercncflem2 43694 dirkercncflem4 43696 fourierdlem32 43729 fourierdlem33 43730 fourierdlem62 43758 fourierdlem93 43789 fourierdlem101 43797 |
Copyright terms: Public domain | W3C validator |