MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restid Structured version   Visualization version   GIF version

Theorem restid 17339
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restid.1 𝑋 = 𝐽
Assertion
Ref Expression
restid (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)

Proof of Theorem restid
StepHypRef Expression
1 restid.1 . . 3 𝑋 = 𝐽
2 uniexg 7679 . . 3 (𝐽𝑉 𝐽 ∈ V)
31, 2eqeltrid 2837 . 2 (𝐽𝑉𝑋 ∈ V)
41eqimss2i 3992 . . 3 𝐽𝑋
5 sspwuni 5050 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
64, 5mpbir 231 . 2 𝐽 ⊆ 𝒫 𝑋
7 restid2 17336 . 2 ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽t 𝑋) = 𝐽)
83, 6, 7sylancl 586 1 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  𝒫 cpw 4549   cuni 4858  (class class class)co 7352  t crest 17326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rest 17328
This theorem is referenced by:  toponrestid  22837  restin  23082  cnrmnrm  23277  cmpkgen  23467  xkopt  23571  xkoinjcn  23603  ussid  24176  tuslem  24182  cnperf  24737  retopconn  24746  abscncfALT  24846  cnmpopc  24850  recnperf  25834  lhop1lem  25946  cxpcn3  26686  retopsconn  35314  ivthALT  36400  binomcxplemdvbinom  44470  binomcxplemnotnn0  44473  fsumcncf  46000  ioccncflimc  46007  cncfuni  46008  icocncflimc  46011  cncfiooicclem1  46015  itgsubsticclem  46097  dirkercncflem2  46226  dirkercncflem4  46228  fourierdlem32  46261  fourierdlem33  46262  fourierdlem62  46290  fourierdlem93  46321  fourierdlem101  46329
  Copyright terms: Public domain W3C validator