Step | Hyp | Ref
| Expression |
1 | | nn0uz 12549 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 12261 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
3 | | binomcxp.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
4 | | peano2cn 11077 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → (𝐶 + 1) ∈
ℂ) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐶 + 1) ∈ ℂ) |
6 | | 1zzd 12281 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
7 | | nn0ex 12169 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
8 | 7 | mptex 7081 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1))) ∈
V |
9 | 8 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V) |
10 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))) |
11 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥) |
12 | 11 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1)) |
13 | 12 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1))) |
14 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℕ0) |
15 | | ovexd 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V) |
16 | 10, 13, 14, 15 | fvmptd 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1))) |
17 | 1, 2, 5, 6, 9, 16 | divcnvshft 15495 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0) |
18 | | ovexd 7290 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈
V) |
19 | | nn0cn 12173 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
20 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ 1 ∈ ℂ) |
21 | 19, 20 | addcld 10925 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℂ) |
22 | | nn0p1nn 12202 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
23 | 22 | nnne0d 11953 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ≠
0) |
24 | 21, 23 | dividd 11679 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((𝑘 + 1) / (𝑘 + 1)) = 1) |
25 | 24 | mpteq2ia 5173 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦
1) |
26 | | fconstmpt 5640 |
. . . . . . . 8
⊢
(ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦
1) |
27 | 25, 26 | eqtr4i 2769 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0
× {1}) |
28 | | ax-1cn 10860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
29 | | 0z 12260 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
30 | 1 | eqimss2i 3976 |
. . . . . . . . 9
⊢
(ℤ≥‘0) ⊆
ℕ0 |
31 | 30, 7 | climconst2 15185 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1})
⇝ 1) |
32 | 28, 29, 31 | mp2an 688 |
. . . . . . 7
⊢
(ℕ0 × {1}) ⇝ 1 |
33 | 27, 32 | eqbrtri 5091 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝
1 |
34 | 33 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1) |
35 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈
ℂ) |
36 | | 1cnd 10901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 1 ∈
ℂ) |
37 | 35, 36 | addcld 10925 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝐶 + 1) ∈
ℂ) |
38 | 14 | nn0cnd 12225 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℂ) |
39 | 38, 36 | addcld 10925 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 + 1) ∈
ℂ) |
40 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ0
→ (𝑥 + 1) ∈
ℕ) |
41 | 40 | nnne0d 11953 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
→ (𝑥 + 1) ≠
0) |
42 | 41 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0) |
43 | 37, 39, 42 | divcld 11681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ) |
44 | 16, 43 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ) |
45 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) |
46 | 12, 12 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1))) |
47 | | ovexd 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V) |
48 | 45, 46, 14, 47 | fvmptd 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1))) |
49 | 39, 39, 42 | divcld 11681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ) |
50 | 48, 49 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ) |
51 | | ovex 7288 |
. . . . . . . 8
⊢ ((𝐶 + 1) / (𝑘 + 1)) ∈ V |
52 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) |
53 | 51, 52 | fnmpti 6560 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1))) Fn
ℕ0 |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn
ℕ0) |
55 | | ovex 7288 |
. . . . . . . 8
⊢ ((𝑘 + 1) / (𝑘 + 1)) ∈ V |
56 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) |
57 | 55, 56 | fnmpti 6560 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1))) Fn
ℕ0 |
58 | 57 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn
ℕ0) |
59 | 7 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ0 ∈
V) |
60 | | inidm 4149 |
. . . . . 6
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
61 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥)) |
62 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)) |
63 | 54, 58, 59, 59, 60, 61, 62 | ofval 7522 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f
− (𝑘 ∈
ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))) |
64 | 1, 2, 17, 18, 34, 44, 50, 63 | climsub 15271 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 −
1)) |
65 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V) |
66 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V) |
67 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))) |
68 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) |
69 | 59, 65, 66, 67, 68 | offval2 7531 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))) |
70 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶 + 1) ∈
ℂ) |
71 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℂ) |
72 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0) |
73 | 70, 71, 71, 72 | divsubdird 11720 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) |
74 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℂ) |
75 | 19 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℂ) |
76 | | 1cnd 10901 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℂ) |
77 | 74, 75, 76 | pnpcan2d 11300 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶 − 𝑘)) |
78 | 77 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶 − 𝑘) / (𝑘 + 1))) |
79 | 73, 78 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶 − 𝑘) / (𝑘 + 1))) |
80 | 79 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 − 𝑘) / (𝑘 + 1)))) |
81 | 69, 80 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0
↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 − 𝑘) / (𝑘 + 1)))) |
82 | | df-neg 11138 |
. . . . . 6
⊢ -1 = (0
− 1) |
83 | 82 | eqcomi 2747 |
. . . . 5
⊢ (0
− 1) = -1 |
84 | 83 | a1i 11 |
. . . 4
⊢ (𝜑 → (0 − 1) =
-1) |
85 | 64, 81, 84 | 3brtr3d 5101 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 − 𝑘) / (𝑘 + 1))) ⇝ -1) |
86 | 7 | mptex 7081 |
. . . 4
⊢ (𝑘 ∈ ℕ0
↦ (abs‘((𝐶
− 𝑘) / (𝑘 + 1)))) ∈
V |
87 | 86 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1)))) ∈ V) |
88 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ ((𝐶 − 𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 − 𝑘) / (𝑘 + 1)))) |
89 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → (𝐶 − 𝑘) = (𝐶 − 𝑥)) |
90 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1)) |
91 | 89, 90 | oveq12d 7273 |
. . . . . 6
⊢ (𝑘 = 𝑥 → ((𝐶 − 𝑘) / (𝑘 + 1)) = ((𝐶 − 𝑥) / (𝑥 + 1))) |
92 | 91 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 − 𝑘) / (𝑘 + 1)) = ((𝐶 − 𝑥) / (𝑥 + 1))) |
93 | | ovexd 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝐶 − 𝑥) / (𝑥 + 1)) ∈ V) |
94 | 88, 92, 14, 93 | fvmptd 6864 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐶 − 𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶 − 𝑥) / (𝑥 + 1))) |
95 | 35, 38 | subcld 11262 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝐶 − 𝑥) ∈ ℂ) |
96 | 95, 39, 42 | divcld 11681 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝐶 − 𝑥) / (𝑥 + 1)) ∈ ℂ) |
97 | 94, 96 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐶 − 𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ) |
98 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (abs‘((𝐶
− 𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1))))) |
99 | 91 | fveq2d 6760 |
. . . . . 6
⊢ (𝑘 = 𝑥 → (abs‘((𝐶 − 𝑘) / (𝑘 + 1))) = (abs‘((𝐶 − 𝑥) / (𝑥 + 1)))) |
100 | 99 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶 − 𝑘) / (𝑘 + 1))) = (abs‘((𝐶 − 𝑥) / (𝑥 + 1)))) |
101 | | fvexd 6771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) →
(abs‘((𝐶 −
𝑥) / (𝑥 + 1))) ∈ V) |
102 | 98, 100, 14, 101 | fvmptd 6864 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (abs‘((𝐶
− 𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶 − 𝑥) / (𝑥 + 1)))) |
103 | 94 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) →
(abs‘((𝑘 ∈
ℕ0 ↦ ((𝐶 − 𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶 − 𝑥) / (𝑥 + 1)))) |
104 | 102, 103 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (abs‘((𝐶
− 𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0
↦ ((𝐶 − 𝑘) / (𝑘 + 1)))‘𝑥))) |
105 | 1, 85, 87, 2, 97, 104 | climabs 15241 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1)))) ⇝
(abs‘-1)) |
106 | 28 | absnegi 15040 |
. . 3
⊢
(abs‘-1) = (abs‘1) |
107 | | abs1 14937 |
. . 3
⊢
(abs‘1) = 1 |
108 | 106, 107 | eqtri 2766 |
. 2
⊢
(abs‘-1) = 1 |
109 | 105, 108 | breqtrdi 5111 |
1
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1)))) ⇝ 1) |