Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemrat Structured version   Visualization version   GIF version

Theorem binomcxplemrat 39155
Description: Lemma for binomcxp 39162. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemrat (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Distinct variable groups:   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem binomcxplemrat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11922 . . 3 0 = (ℤ‘0)
2 0zd 11636 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 peano2cn 10462 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 1) ∈ ℂ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝐶 + 1) ∈ ℂ)
6 1zzd 11655 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 nn0ex 11545 . . . . . . . 8 0 ∈ V
87mptex 6679 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V
98a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V)
10 eqidd 2766 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
11 simpr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1211oveq1d 6857 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1))
1312oveq2d 6858 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1)))
14 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
15 ovexd 6876 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V)
1610, 13, 14, 15fvmptd 6477 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1)))
171, 2, 5, 6, 9, 16divcnvshft 14873 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0)
18 ovexd 6876 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘𝑓 − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈ V)
19 nn0cn 11549 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
20 1cnd 10288 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
2119, 20addcld 10313 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
22 nn0p1nn 11579 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2322nnne0d 11322 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
2421, 23dividd 11053 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑘 + 1) / (𝑘 + 1)) = 1)
2524mpteq2ia 4899 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ 1)
26 fconstmpt 5333 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
2725, 26eqtr4i 2790 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0 × {1})
28 ax-1cn 10247 . . . . . . . 8 1 ∈ ℂ
29 0z 11635 . . . . . . . 8 0 ∈ ℤ
301eqimss2i 3820 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0
3130, 7climconst2 14566 . . . . . . . 8 ((1 ∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1}) ⇝ 1)
3228, 29, 31mp2an 683 . . . . . . 7 (ℕ0 × {1}) ⇝ 1
3327, 32eqbrtri 4830 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1
3433a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1)
353adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝐶 ∈ ℂ)
36 1cnd 10288 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 1 ∈ ℂ)
3735, 36addcld 10313 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
3814nn0cnd 11600 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
3938, 36addcld 10313 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ∈ ℂ)
40 nn0p1nn 11579 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4140nnne0d 11322 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 1) ≠ 0)
4241adantl 473 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0)
4337, 39, 42divcld 11055 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ)
4416, 43eqeltrd 2844 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
45 eqidd 2766 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
4612, 12oveq12d 6860 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1)))
47 ovexd 6876 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V)
4845, 46, 14, 47fvmptd 6477 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1)))
4939, 39, 42divcld 11055 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ)
5048, 49eqeltrd 2844 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
51 ovex 6874 . . . . . . . 8 ((𝐶 + 1) / (𝑘 + 1)) ∈ V
52 eqid 2765 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))
5351, 52fnmpti 6200 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0
5453a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0)
55 ovex 6874 . . . . . . . 8 ((𝑘 + 1) / (𝑘 + 1)) ∈ V
56 eqid 2765 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))
5755, 56fnmpti 6200 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0
5857a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0)
597a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
60 inidm 3982 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
61 eqidd 2766 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥))
62 eqidd 2766 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))
6354, 58, 59, 59, 60, 61, 62ofval 7104 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘𝑓 − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)))
641, 2, 17, 18, 34, 44, 50, 63climsub 14651 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘𝑓 − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 − 1))
65 ovexd 6876 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V)
66 ovexd 6876 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V)
67 eqidd 2766 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
68 eqidd 2766 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
6959, 65, 66, 67, 68offval2 7112 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘𝑓 − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))))
705adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
7121adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
7223adantl 473 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7370, 71, 71, 72divsubdird 11094 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))
743adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
7519adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
76 1cnd 10288 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
7774, 75, 76pnpcan2d 10684 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶𝑘))
7877oveq1d 6857 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶𝑘) / (𝑘 + 1)))
7973, 78eqtr3d 2801 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶𝑘) / (𝑘 + 1)))
8079mpteq2dva 4903 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
8169, 80eqtrd 2799 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘𝑓 − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
82 df-neg 10523 . . . . . 6 -1 = (0 − 1)
8382eqcomi 2774 . . . . 5 (0 − 1) = -1
8483a1i 11 . . . 4 (𝜑 → (0 − 1) = -1)
8564, 81, 843brtr3d 4840 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) ⇝ -1)
867mptex 6679 . . . 4 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V
8786a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V)
88 eqidd 2766 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
89 oveq2 6850 . . . . . . 7 (𝑘 = 𝑥 → (𝐶𝑘) = (𝐶𝑥))
90 oveq1 6849 . . . . . . 7 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
9189, 90oveq12d 6860 . . . . . 6 (𝑘 = 𝑥 → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
9291adantl 473 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
93 ovexd 6876 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ V)
9488, 92, 14, 93fvmptd 6477 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶𝑥) / (𝑥 + 1)))
9535, 38subcld 10646 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝐶𝑥) ∈ ℂ)
9695, 39, 42divcld 11055 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ ℂ)
9794, 96eqeltrd 2844 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
98 eqidd 2766 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
9991fveq2d 6379 . . . . . 6 (𝑘 = 𝑥 → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10099adantl 473 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
101 fvexd 6390 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝐶𝑥) / (𝑥 + 1))) ∈ V)
10298, 100, 14, 101fvmptd 6477 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10394fveq2d 6379 . . . 4 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
104102, 103eqtr4d 2802 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)))
1051, 85, 87, 2, 97, 104climabs 14621 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ (abs‘-1))
10628absnegi 14426 . . 3 (abs‘-1) = (abs‘1)
107 abs1 14324 . . 3 (abs‘1) = 1
108106, 107eqtri 2787 . 2 (abs‘-1) = 1
109105, 108syl6breq 4850 1 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275   Fn wfn 6063  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cmin 10520  -cneg 10521   / cdiv 10938  0cn0 11538  cz 11624  cuz 11886  +crp 12028  abscabs 14261  cli 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fl 12801  df-seq 13009  df-exp 13068  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507
This theorem is referenced by:  binomcxplemfrat  39156
  Copyright terms: Public domain W3C validator