Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemrat Structured version   Visualization version   GIF version

Theorem binomcxplemrat 43710
Description: Lemma for binomcxp 43717. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemrat (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Distinct variable groups:   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem binomcxplemrat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12886 . . 3 0 = (ℤ‘0)
2 0zd 12592 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 peano2cn 11408 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 1) ∈ ℂ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝐶 + 1) ∈ ℂ)
6 1zzd 12615 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 nn0ex 12500 . . . . . . . 8 0 ∈ V
87mptex 7229 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V
98a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V)
10 eqidd 2728 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
11 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1211oveq1d 7429 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1))
1312oveq2d 7430 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1)))
14 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
15 ovexd 7449 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V)
1610, 13, 14, 15fvmptd 7006 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1)))
171, 2, 5, 6, 9, 16divcnvshft 15825 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0)
18 ovexd 7449 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈ V)
19 nn0cn 12504 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
20 1cnd 11231 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
2119, 20addcld 11255 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
22 nn0p1nn 12533 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2322nnne0d 12284 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
2421, 23dividd 12010 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑘 + 1) / (𝑘 + 1)) = 1)
2524mpteq2ia 5245 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ 1)
26 fconstmpt 5734 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
2725, 26eqtr4i 2758 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0 × {1})
28 ax-1cn 11188 . . . . . . . 8 1 ∈ ℂ
29 0z 12591 . . . . . . . 8 0 ∈ ℤ
301eqimss2i 4039 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0
3130, 7climconst2 15516 . . . . . . . 8 ((1 ∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1}) ⇝ 1)
3228, 29, 31mp2an 691 . . . . . . 7 (ℕ0 × {1}) ⇝ 1
3327, 32eqbrtri 5163 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1
3433a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1)
353adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝐶 ∈ ℂ)
36 1cnd 11231 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 1 ∈ ℂ)
3735, 36addcld 11255 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
3814nn0cnd 12556 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
3938, 36addcld 11255 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ∈ ℂ)
40 nn0p1nn 12533 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4140nnne0d 12284 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 1) ≠ 0)
4241adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0)
4337, 39, 42divcld 12012 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ)
4416, 43eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
45 eqidd 2728 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
4612, 12oveq12d 7432 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1)))
47 ovexd 7449 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V)
4845, 46, 14, 47fvmptd 7006 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1)))
4939, 39, 42divcld 12012 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ)
5048, 49eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
51 ovex 7447 . . . . . . . 8 ((𝐶 + 1) / (𝑘 + 1)) ∈ V
52 eqid 2727 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))
5351, 52fnmpti 6692 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0
5453a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0)
55 ovex 7447 . . . . . . . 8 ((𝑘 + 1) / (𝑘 + 1)) ∈ V
56 eqid 2727 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))
5755, 56fnmpti 6692 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0
5857a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0)
597a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
60 inidm 4214 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
61 eqidd 2728 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥))
62 eqidd 2728 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))
6354, 58, 59, 59, 60, 61, 62ofval 7690 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)))
641, 2, 17, 18, 34, 44, 50, 63climsub 15602 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 − 1))
65 ovexd 7449 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V)
66 ovexd 7449 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V)
67 eqidd 2728 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
68 eqidd 2728 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
6959, 65, 66, 67, 68offval2 7699 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))))
705adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
7121adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
7223adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7370, 71, 71, 72divsubdird 12051 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))
743adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
7519adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
76 1cnd 11231 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
7774, 75, 76pnpcan2d 11631 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶𝑘))
7877oveq1d 7429 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶𝑘) / (𝑘 + 1)))
7973, 78eqtr3d 2769 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶𝑘) / (𝑘 + 1)))
8079mpteq2dva 5242 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
8169, 80eqtrd 2767 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
82 df-neg 11469 . . . . . 6 -1 = (0 − 1)
8382eqcomi 2736 . . . . 5 (0 − 1) = -1
8483a1i 11 . . . 4 (𝜑 → (0 − 1) = -1)
8564, 81, 843brtr3d 5173 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) ⇝ -1)
867mptex 7229 . . . 4 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V
8786a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V)
88 eqidd 2728 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
89 oveq2 7422 . . . . . . 7 (𝑘 = 𝑥 → (𝐶𝑘) = (𝐶𝑥))
90 oveq1 7421 . . . . . . 7 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
9189, 90oveq12d 7432 . . . . . 6 (𝑘 = 𝑥 → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
9291adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
93 ovexd 7449 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ V)
9488, 92, 14, 93fvmptd 7006 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶𝑥) / (𝑥 + 1)))
9535, 38subcld 11593 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝐶𝑥) ∈ ℂ)
9695, 39, 42divcld 12012 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ ℂ)
9794, 96eqeltrd 2828 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
98 eqidd 2728 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
9991fveq2d 6895 . . . . . 6 (𝑘 = 𝑥 → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10099adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
101 fvexd 6906 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝐶𝑥) / (𝑥 + 1))) ∈ V)
10298, 100, 14, 101fvmptd 7006 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10394fveq2d 6895 . . . 4 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
104102, 103eqtr4d 2770 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)))
1051, 85, 87, 2, 97, 104climabs 15572 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ (abs‘-1))
10628absnegi 15371 . . 3 (abs‘-1) = (abs‘1)
107 abs1 15268 . . 3 (abs‘1) = 1
108106, 107eqtri 2755 . 2 (abs‘-1) = 1
109105, 108breqtrdi 5183 1 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  {csn 4624   class class class wbr 5142  cmpt 5225   × cxp 5670   Fn wfn 6537  cfv 6542  (class class class)co 7414  f cof 7677  cc 11128  cr 11129  0cc0 11130  1c1 11131   + caddc 11133   < clt 11270  cmin 11466  -cneg 11467   / cdiv 11893  0cn0 12494  cz 12580  cuz 12844  +crp 12998  abscabs 15205  cli 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fl 13781  df-seq 13991  df-exp 14051  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-rlim 15457
This theorem is referenced by:  binomcxplemfrat  43711
  Copyright terms: Public domain W3C validator