Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemrat Structured version   Visualization version   GIF version

Theorem binomcxplemrat 44312
Description: Lemma for binomcxp 44319. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemrat (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Distinct variable groups:   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem binomcxplemrat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12811 . . 3 0 = (ℤ‘0)
2 0zd 12517 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 peano2cn 11322 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 1) ∈ ℂ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝐶 + 1) ∈ ℂ)
6 1zzd 12540 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 nn0ex 12424 . . . . . . . 8 0 ∈ V
87mptex 7179 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V
98a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V)
10 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
11 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1211oveq1d 7384 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1))
1312oveq2d 7385 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1)))
14 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
15 ovexd 7404 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V)
1610, 13, 14, 15fvmptd 6957 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1)))
171, 2, 5, 6, 9, 16divcnvshft 15797 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0)
18 ovexd 7404 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈ V)
19 nn0cn 12428 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
20 1cnd 11145 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
2119, 20addcld 11169 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
22 nn0p1nn 12457 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2322nnne0d 12212 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
2421, 23dividd 11932 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑘 + 1) / (𝑘 + 1)) = 1)
2524mpteq2ia 5197 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ 1)
26 fconstmpt 5693 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
2725, 26eqtr4i 2755 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0 × {1})
28 ax-1cn 11102 . . . . . . . 8 1 ∈ ℂ
29 0z 12516 . . . . . . . 8 0 ∈ ℤ
301eqimss2i 4005 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0
3130, 7climconst2 15490 . . . . . . . 8 ((1 ∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1}) ⇝ 1)
3228, 29, 31mp2an 692 . . . . . . 7 (ℕ0 × {1}) ⇝ 1
3327, 32eqbrtri 5123 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1
3433a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1)
353adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝐶 ∈ ℂ)
36 1cnd 11145 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 1 ∈ ℂ)
3735, 36addcld 11169 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
3814nn0cnd 12481 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
3938, 36addcld 11169 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ∈ ℂ)
40 nn0p1nn 12457 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4140nnne0d 12212 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 1) ≠ 0)
4241adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0)
4337, 39, 42divcld 11934 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ)
4416, 43eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
45 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
4612, 12oveq12d 7387 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1)))
47 ovexd 7404 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V)
4845, 46, 14, 47fvmptd 6957 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1)))
4939, 39, 42divcld 11934 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ)
5048, 49eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
51 ovex 7402 . . . . . . . 8 ((𝐶 + 1) / (𝑘 + 1)) ∈ V
52 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))
5351, 52fnmpti 6643 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0
5453a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0)
55 ovex 7402 . . . . . . . 8 ((𝑘 + 1) / (𝑘 + 1)) ∈ V
56 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))
5755, 56fnmpti 6643 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0
5857a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0)
597a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
60 inidm 4186 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
61 eqidd 2730 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥))
62 eqidd 2730 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))
6354, 58, 59, 59, 60, 61, 62ofval 7644 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)))
641, 2, 17, 18, 34, 44, 50, 63climsub 15576 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 − 1))
65 ovexd 7404 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V)
66 ovexd 7404 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V)
67 eqidd 2730 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
68 eqidd 2730 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
6959, 65, 66, 67, 68offval2 7653 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))))
705adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
7121adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
7223adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7370, 71, 71, 72divsubdird 11973 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))
743adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
7519adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
76 1cnd 11145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
7774, 75, 76pnpcan2d 11547 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶𝑘))
7877oveq1d 7384 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶𝑘) / (𝑘 + 1)))
7973, 78eqtr3d 2766 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶𝑘) / (𝑘 + 1)))
8079mpteq2dva 5195 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
8169, 80eqtrd 2764 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
82 df-neg 11384 . . . . . 6 -1 = (0 − 1)
8382eqcomi 2738 . . . . 5 (0 − 1) = -1
8483a1i 11 . . . 4 (𝜑 → (0 − 1) = -1)
8564, 81, 843brtr3d 5133 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) ⇝ -1)
867mptex 7179 . . . 4 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V
8786a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V)
88 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
89 oveq2 7377 . . . . . . 7 (𝑘 = 𝑥 → (𝐶𝑘) = (𝐶𝑥))
90 oveq1 7376 . . . . . . 7 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
9189, 90oveq12d 7387 . . . . . 6 (𝑘 = 𝑥 → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
9291adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
93 ovexd 7404 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ V)
9488, 92, 14, 93fvmptd 6957 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶𝑥) / (𝑥 + 1)))
9535, 38subcld 11509 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝐶𝑥) ∈ ℂ)
9695, 39, 42divcld 11934 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ ℂ)
9794, 96eqeltrd 2828 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
98 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
9991fveq2d 6844 . . . . . 6 (𝑘 = 𝑥 → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10099adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
101 fvexd 6855 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝐶𝑥) / (𝑥 + 1))) ∈ V)
10298, 100, 14, 101fvmptd 6957 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10394fveq2d 6844 . . . 4 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
104102, 103eqtr4d 2767 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)))
1051, 85, 87, 2, 97, 104climabs 15546 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ (abs‘-1))
10628absnegi 15343 . . 3 (abs‘-1) = (abs‘1)
107 abs1 15239 . . 3 (abs‘1) = 1
108106, 107eqtri 2752 . 2 (abs‘-1) = 1
109105, 108breqtrdi 5143 1 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  0cn0 12418  cz 12505  cuz 12769  +crp 12927  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-seq 13943  df-exp 14003  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431
This theorem is referenced by:  binomcxplemfrat  44313
  Copyright terms: Public domain W3C validator