Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemrat Structured version   Visualization version   GIF version

Theorem binomcxplemrat 40688
Description: Lemma for binomcxp 40695. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemrat (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Distinct variable groups:   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem binomcxplemrat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12283 . . 3 0 = (ℤ‘0)
2 0zd 11996 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 peano2cn 10815 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 1) ∈ ℂ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝐶 + 1) ∈ ℂ)
6 1zzd 12016 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 nn0ex 11906 . . . . . . . 8 0 ∈ V
87mptex 6989 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V
98a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V)
10 eqidd 2825 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
11 simpr 487 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1211oveq1d 7174 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1))
1312oveq2d 7175 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1)))
14 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
15 ovexd 7194 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V)
1610, 13, 14, 15fvmptd 6778 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1)))
171, 2, 5, 6, 9, 16divcnvshft 15213 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0)
18 ovexd 7194 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈ V)
19 nn0cn 11910 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
20 1cnd 10639 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
2119, 20addcld 10663 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
22 nn0p1nn 11939 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2322nnne0d 11690 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
2421, 23dividd 11417 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑘 + 1) / (𝑘 + 1)) = 1)
2524mpteq2ia 5160 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ 1)
26 fconstmpt 5617 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
2725, 26eqtr4i 2850 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0 × {1})
28 ax-1cn 10598 . . . . . . . 8 1 ∈ ℂ
29 0z 11995 . . . . . . . 8 0 ∈ ℤ
301eqimss2i 4029 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0
3130, 7climconst2 14908 . . . . . . . 8 ((1 ∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1}) ⇝ 1)
3228, 29, 31mp2an 690 . . . . . . 7 (ℕ0 × {1}) ⇝ 1
3327, 32eqbrtri 5090 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1
3433a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1)
353adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝐶 ∈ ℂ)
36 1cnd 10639 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 1 ∈ ℂ)
3735, 36addcld 10663 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
3814nn0cnd 11960 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
3938, 36addcld 10663 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ∈ ℂ)
40 nn0p1nn 11939 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4140nnne0d 11690 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 1) ≠ 0)
4241adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0)
4337, 39, 42divcld 11419 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ)
4416, 43eqeltrd 2916 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
45 eqidd 2825 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
4612, 12oveq12d 7177 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1)))
47 ovexd 7194 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V)
4845, 46, 14, 47fvmptd 6778 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1)))
4939, 39, 42divcld 11419 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ)
5048, 49eqeltrd 2916 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
51 ovex 7192 . . . . . . . 8 ((𝐶 + 1) / (𝑘 + 1)) ∈ V
52 eqid 2824 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))
5351, 52fnmpti 6494 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0
5453a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0)
55 ovex 7192 . . . . . . . 8 ((𝑘 + 1) / (𝑘 + 1)) ∈ V
56 eqid 2824 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))
5755, 56fnmpti 6494 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0
5857a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0)
597a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
60 inidm 4198 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
61 eqidd 2825 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥))
62 eqidd 2825 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))
6354, 58, 59, 59, 60, 61, 62ofval 7421 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)))
641, 2, 17, 18, 34, 44, 50, 63climsub 14993 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 − 1))
65 ovexd 7194 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V)
66 ovexd 7194 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V)
67 eqidd 2825 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
68 eqidd 2825 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
6959, 65, 66, 67, 68offval2 7429 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))))
705adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
7121adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
7223adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7370, 71, 71, 72divsubdird 11458 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))
743adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
7519adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
76 1cnd 10639 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
7774, 75, 76pnpcan2d 11038 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶𝑘))
7877oveq1d 7174 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶𝑘) / (𝑘 + 1)))
7973, 78eqtr3d 2861 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶𝑘) / (𝑘 + 1)))
8079mpteq2dva 5164 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
8169, 80eqtrd 2859 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
82 df-neg 10876 . . . . . 6 -1 = (0 − 1)
8382eqcomi 2833 . . . . 5 (0 − 1) = -1
8483a1i 11 . . . 4 (𝜑 → (0 − 1) = -1)
8564, 81, 843brtr3d 5100 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) ⇝ -1)
867mptex 6989 . . . 4 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V
8786a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V)
88 eqidd 2825 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
89 oveq2 7167 . . . . . . 7 (𝑘 = 𝑥 → (𝐶𝑘) = (𝐶𝑥))
90 oveq1 7166 . . . . . . 7 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
9189, 90oveq12d 7177 . . . . . 6 (𝑘 = 𝑥 → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
9291adantl 484 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
93 ovexd 7194 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ V)
9488, 92, 14, 93fvmptd 6778 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶𝑥) / (𝑥 + 1)))
9535, 38subcld 11000 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝐶𝑥) ∈ ℂ)
9695, 39, 42divcld 11419 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ ℂ)
9794, 96eqeltrd 2916 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
98 eqidd 2825 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
9991fveq2d 6677 . . . . . 6 (𝑘 = 𝑥 → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10099adantl 484 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
101 fvexd 6688 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝐶𝑥) / (𝑥 + 1))) ∈ V)
10298, 100, 14, 101fvmptd 6778 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10394fveq2d 6677 . . . 4 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
104102, 103eqtr4d 2862 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)))
1051, 85, 87, 2, 97, 104climabs 14963 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ (abs‘-1))
10628absnegi 14763 . . 3 (abs‘-1) = (abs‘1)
107 abs1 14660 . . 3 (abs‘1) = 1
108106, 107eqtri 2847 . 2 (abs‘-1) = 1
109105, 108breqtrdi 5110 1 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  {csn 4570   class class class wbr 5069  cmpt 5149   × cxp 5556   Fn wfn 6353  cfv 6358  (class class class)co 7159  f cof 7410  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cmin 10873  -cneg 10874   / cdiv 11300  0cn0 11900  cz 11984  cuz 12246  +crp 12392  abscabs 14596  cli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849
This theorem is referenced by:  binomcxplemfrat  40689
  Copyright terms: Public domain W3C validator