Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemrat Structured version   Visualization version   GIF version

Theorem binomcxplemrat 44327
Description: Lemma for binomcxp 44334. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemrat (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Distinct variable groups:   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem binomcxplemrat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12777 . . 3 0 = (ℤ‘0)
2 0zd 12483 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 peano2cn 11288 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 1) ∈ ℂ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝐶 + 1) ∈ ℂ)
6 1zzd 12506 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 nn0ex 12390 . . . . . . . 8 0 ∈ V
87mptex 7159 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V
98a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∈ V)
10 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
11 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1211oveq1d 7364 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (𝑘 + 1) = (𝑥 + 1))
1312oveq2d 7365 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶 + 1) / (𝑘 + 1)) = ((𝐶 + 1) / (𝑥 + 1)))
14 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
15 ovexd 7384 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ V)
1610, 13, 14, 15fvmptd 6937 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝐶 + 1) / (𝑥 + 1)))
171, 2, 5, 6, 9, 16divcnvshft 15762 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ⇝ 0)
18 ovexd 7384 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ∈ V)
19 nn0cn 12394 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
20 1cnd 11110 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
2119, 20addcld 11134 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
22 nn0p1nn 12423 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2322nnne0d 12178 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
2421, 23dividd 11898 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑘 + 1) / (𝑘 + 1)) = 1)
2524mpteq2ia 5187 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ 1)
26 fconstmpt 5681 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
2725, 26eqtr4i 2755 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (ℕ0 × {1})
28 ax-1cn 11067 . . . . . . . 8 1 ∈ ℂ
29 0z 12482 . . . . . . . 8 0 ∈ ℤ
301eqimss2i 3997 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0
3130, 7climconst2 15455 . . . . . . . 8 ((1 ∈ ℂ ∧ 0 ∈ ℤ) → (ℕ0 × {1}) ⇝ 1)
3228, 29, 31mp2an 692 . . . . . . 7 (ℕ0 × {1}) ⇝ 1
3327, 32eqbrtri 5113 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1
3433a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) ⇝ 1)
353adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝐶 ∈ ℂ)
36 1cnd 11110 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 1 ∈ ℂ)
3735, 36addcld 11134 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
3814nn0cnd 12447 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
3938, 36addcld 11134 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ∈ ℂ)
40 nn0p1nn 12423 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (𝑥 + 1) ∈ ℕ)
4140nnne0d 12178 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 1) ≠ 0)
4241adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑥 + 1) ≠ 0)
4337, 39, 42divcld 11900 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝐶 + 1) / (𝑥 + 1)) ∈ ℂ)
4416, 43eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
45 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
4612, 12oveq12d 7367 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝑘 + 1) / (𝑘 + 1)) = ((𝑥 + 1) / (𝑥 + 1)))
47 ovexd 7384 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ V)
4845, 46, 14, 47fvmptd 6937 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑥 + 1) / (𝑥 + 1)))
4939, 39, 42divcld 11900 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑥 + 1) / (𝑥 + 1)) ∈ ℂ)
5048, 49eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
51 ovex 7382 . . . . . . . 8 ((𝐶 + 1) / (𝑘 + 1)) ∈ V
52 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))
5351, 52fnmpti 6625 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0
5453a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) Fn ℕ0)
55 ovex 7382 . . . . . . . 8 ((𝑘 + 1) / (𝑘 + 1)) ∈ V
56 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))
5755, 56fnmpti 6625 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0
5857a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) Fn ℕ0)
597a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
60 inidm 4178 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
61 eqidd 2730 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥))
62 eqidd 2730 . . . . . 6 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥) = ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥))
6354, 58, 59, 59, 60, 61, 62ofval 7624 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))‘𝑥) = (((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1)))‘𝑥) − ((𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))‘𝑥)))
641, 2, 17, 18, 34, 44, 50, 63climsub 15541 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) ⇝ (0 − 1))
65 ovexd 7384 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) / (𝑘 + 1)) ∈ V)
66 ovexd 7384 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + 1)) ∈ V)
67 eqidd 2730 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))))
68 eqidd 2730 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1))))
6959, 65, 66, 67, 68offval2 7633 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))))
705adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶 + 1) ∈ ℂ)
7121adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
7223adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7370, 71, 71, 72divsubdird 11939 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))))
743adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
7519adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
76 1cnd 11110 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
7774, 75, 76pnpcan2d 11513 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐶 + 1) − (𝑘 + 1)) = (𝐶𝑘))
7877oveq1d 7364 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) − (𝑘 + 1)) / (𝑘 + 1)) = ((𝐶𝑘) / (𝑘 + 1)))
7973, 78eqtr3d 2766 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1))) = ((𝐶𝑘) / (𝑘 + 1)))
8079mpteq2dva 5185 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (((𝐶 + 1) / (𝑘 + 1)) − ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
8169, 80eqtrd 2764 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0 ↦ ((𝐶 + 1) / (𝑘 + 1))) ∘f − (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
82 df-neg 11350 . . . . . 6 -1 = (0 − 1)
8382eqcomi 2738 . . . . 5 (0 − 1) = -1
8483a1i 11 . . . 4 (𝜑 → (0 − 1) = -1)
8564, 81, 843brtr3d 5123 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) ⇝ -1)
867mptex 7159 . . . 4 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V
8786a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ∈ V)
88 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1))))
89 oveq2 7357 . . . . . . 7 (𝑘 = 𝑥 → (𝐶𝑘) = (𝐶𝑥))
90 oveq1 7356 . . . . . . 7 (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1))
9189, 90oveq12d 7367 . . . . . 6 (𝑘 = 𝑥 → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
9291adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → ((𝐶𝑘) / (𝑘 + 1)) = ((𝐶𝑥) / (𝑥 + 1)))
93 ovexd 7384 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ V)
9488, 92, 14, 93fvmptd 6937 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) = ((𝐶𝑥) / (𝑥 + 1)))
9535, 38subcld 11475 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝐶𝑥) ∈ ℂ)
9695, 39, 42divcld 11900 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝐶𝑥) / (𝑥 + 1)) ∈ ℂ)
9794, 96eqeltrd 2828 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥) ∈ ℂ)
98 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
9991fveq2d 6826 . . . . . 6 (𝑘 = 𝑥 → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10099adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑘 = 𝑥) → (abs‘((𝐶𝑘) / (𝑘 + 1))) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
101 fvexd 6837 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝐶𝑥) / (𝑥 + 1))) ∈ V)
10298, 100, 14, 101fvmptd 6937 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
10394fveq2d 6826 . . . 4 ((𝜑𝑥 ∈ ℕ0) → (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)) = (abs‘((𝐶𝑥) / (𝑥 + 1))))
104102, 103eqtr4d 2767 . . 3 ((𝜑𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1))))‘𝑥) = (abs‘((𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) / (𝑘 + 1)))‘𝑥)))
1051, 85, 87, 2, 97, 104climabs 15511 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ (abs‘-1))
10628absnegi 15308 . . 3 (abs‘-1) = (abs‘1)
107 abs1 15204 . . 3 (abs‘1) = 1
108106, 107eqtri 2752 . 2 (abs‘-1) = 1
109105, 108breqtrdi 5133 1 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  f cof 7611  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  0cn0 12384  cz 12471  cuz 12735  +crp 12893  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-seq 13909  df-exp 13969  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396
This theorem is referenced by:  binomcxplemfrat  44328
  Copyright terms: Public domain W3C validator